[Table of Contents]

Plasma and Fusion Research

Volume 5, S1008 (2010)

Review Articles


Integrated Performance and Critical Issues for Steady-State Operation in JT-60U
Yoshiteru SAKAMOTO and the JT-60 team
Japan Atomic Energy Agency, 801-1, Mukouyama, Naka, Ibaraki, 311-0193, Japan
(Received 19 January 2009 / Accepted 1 September 2009 / Published 26 March 2010)

Abstract

This paper reports on the integrated performance achieved in JT-60U toward the steady-state operation foreseen in the ITER and DEMO reactors. Advanced tokamak plasmas with weak shear or reversed shear have been optimized to confront critical issues such as high-beta operation with high confinement, the compatibility of high-density operation with high confinement, and long sustainment with a high non-inductive current drive fraction. As a result, high-integrated performance was achieved in both plasma regimes. For example, high-confinement reversed shear plasmas with a high bootstrap current fraction exceeding the no-wall beta limit have been obtained in the reactor relevant q95∼5.3; high values of βN∼2.7, HH98y2∼1.7, ne/nGW∼0.87, and fBS∼0.9 are simultaneously achieved with a reversed q profile with qmin∼2.3.


Keywords

advanced tokamak, integrated performance, DEMO reactor, high beta, high density, high confinement, long sustainment

DOI: 10.1585/pfr.5.S1008


References

  • [1] S. Ishida et al., Proc. 16th Int. Conf. Plasma Physics and Controlled Nuclear Fusion Research, Montreal, Canada, October 7-11, 1996, Vol. 1, p. 315, International Atomic Energy Agency (1997).
  • [2] T. Fujita et al., Nucl. Fusion 39, 1627 (1999).
  • [3] Y. Kamada and the JT-60 team, Nucl. Fusion 41, 1311 (2001).
  • [4] Plasma Performance Assessment 2004 section 3.4, ITER Technical Basis ITER EDA Documentation Series.
  • [5] Y. Kamada et al., Fusion Sci. Technol. 42, 185 (2002).
  • [6] C.M. Bishop, Plasma Phys. Control. Fusion 31, 1179 (1989).
  • [7] A. Bondeson and D.J. Ward, Phys. Rev. Lett. 72, 2709 (1994).
  • [8] J.E. Rice et al., Nucl. Fusion 47, 1618 (2007).
  • [9] M. Takechi et al., Phys. Rev. Lett. 98, 055002 (2007).
  • [10] H. Reimerdes et al., Phys. Rev. Lett. 98, 055001 (2007).
  • [11] M. Takechi et al., Proc. 21st Int. Conf. on Fusion Energy (Chengdu, 2006) (Vienna: IAEA) EX/7-1Rb.
  • [12] G. Matsunaga et al., Proc. 22nd Int. Conf. on Fusion Energy (Geneva, 2008) (Vienna: IAEA) EX/5-2.
  • [13] S. Tokuda and T. Watanabe, Phys. Plasmas 6, 3012 (1999).
  • [14] K. Tani et al., J. Comput. Phys. 98, 332 (1992).
  • [15] G. Matsunaga et al., Phys. Rev. Lett. 103, 045001 (2009).
  • [16] Y. Sakamoto et al., Nucl. Fusion 49, 095017 (2009).
  • [17] H. Urano et al., Plasma Phys. Control. Fusion 44, 11 (2002).
  • [18] Y. Kamada et al., Plasma Phys. Control. Fusion 44, A279 (2002).
  • [19] H. Takenaga et al., Nucl. Fusion 45, 1618 (2005).
  • [20] N. Asakura et al., Nucl. Fusion 49, 115010 (2009).
  • [21] A. Isayama et al., Nucl. Fusion 43, 1272 (2003).
  • [22] Y. Sakamoto et al., Nucl. Fusion 45, 574 (2005).
  • [23] Y. Sakamoto et al., Nucl. Fusion 41, 865 (2001).
  • [24] K. Tobita et al., Nucl. Fusion 47, 892 (2007).
  • [25] T. Fujita et al., Nucl. Fusion 47, 1512 (2007).

This paper may be cited as follows:

Yoshiteru SAKAMOTO and the JT-60 team, Plasma Fusion Res. 5, S1008 (2010).