[Table of Contents]

Plasma and Fusion Research

Volume 5, S1004 (2010)

Review Articles


Issues of Electric Fields in Fusion Devices
Michael TENDLER
Alfvén Laboratory, KTH, Stockholm, Sweden
(Received 22 January 2009 / Accepted 28 July 2009 / Published 26 March 2010)

Abstract

At present it is well understood that the key element in the transition physics is the origin of the strong radial electric field and suppression of the turbulence fluctuation level by a strong poloidal rotation in the E × B fields. As a result, the transport coefficients are strongly reduced at fixed places and transport barriers with steep density and temperature gradients are formed near the separatrix or the last closed flux surface (ETB) or in the core region (ITB). The key element in the transition physics is the origin of the strong radial electric field. The impact of the momentum transport is brought to light.


Keywords

LH transitions, E × B shear suppression, anomalous momentum transport

DOI: 10.1585/pfr.5.S1004


References

  • [1] M. Tendler, Comments Plasma Physics & Controlled Nuclear Fusion 13, 191 (1990).
  • [2] K. Ida et al., Phys. Rev. Lett. 86, 5297 (1991).
  • [3] V. Rozhansky and M. Tendler, Reviews of Plasma Physics vol.19, ed. B.B. Kadomtsev (New York and London, Consultants Bureau, 1996).
  • [4] A. Fujisawa et al., Phys. Rev. Lett. 82, 2669 (1999).
  • [5] K. Itoh et al., Phys. Plasmas 12, 072512 (2005).
  • [6] S.-I. Itoh and K. Itoh, Phys. Rev. Lett. 60, 2276 (1988).
  • [7] K.C. Shaing and E.C. Crume, Phys. Rev. Lett. 63, 2365 (1989).
  • [8] Y.B. Kim and F. Hinton, Phys. Fluids B4, 278 (1992).
  • [9] A. Hassam et al., Phys. Rev. Lett. 66, 309 (1991).
  • [10] B.A. Carreras et al., Phys. Fluids B3, 696 (1991).
  • [11] V. Rozhansky and M. Tendler, Phys. Fluids B4, 1877, (1992).
  • [12] M. Tendler, Plasma Phys. Control. Fusion B39, 371 (1997).
  • [13] H. Biglari, P. Diamond and P.W. Terry, Phys. Fluids B2, 1 (1990).
  • [14] L.G. Askinazi et al., Phys. Fluids B5, 2420 (1993).
  • [15] P. Gohil, Phys. Rev. Lett. 86, 644 (2001).
  • [16] O. Motojima, Proceed. IAEA Conf. Fusion Energy, Chengdu, China (2006).
  • [17] F.L. Hinton and R.D. Hazeltine, Rev. Mod. Phys. 48, 239 (1976).
  • [18] F. Wagner et al., Phys. Rev. Lett. 49, 1408 (1982).
  • [19] J. Hugill, Plasma Phys. Control. Fusion 42, 75 (2000).
  • [20] R. Groebner et al., Phys. Rev. Lett. 64, 3015 (1990).
  • [21] V. Rozhansky, M. Tendler and S. Voskoboinikov, Plasma Phys. Control. Fusion 38, 1327 (1996).
  • [22] J.B. Taylor et al., Phys. Plasmas 5, 3065 (1998)
  • [23] I. Kaganovich, V. Rozhansky and M. Tendler, “Bootstrap current due to shear of stochasticity of magnetic field,” International Conference on Plasma Physics ICPP96, Nagoya, pp.314-317.
  • [24] I. Kaganovich, Phys. Plasmas 5, 3901 (1998).
  • [25] L. Askinazi et al., Plasma Phys. Control. Fusion 48, A85 (2006).
  • [26] E. Kaveeva, V. Rozhansky and M. Tendler, Nucl. Fusion 48, 075003 (2008).

This paper may be cited as follows:

Michael TENDLER, Plasma Fusion Res. 5, S1004 (2010).