[Table of Contents]

Plasma and Fusion Research

Volume 5, S1003 (2010)

Regular Articles


Advanced Tokamak Research in JT-60U and JT-60SA
Akihiko ISAYAMA for the JT-60 team
Japan Atomic Energy Agency, Naka, Ibaraki 311-0193, Japan
(Received 8 January 2009 / Accepted 8 July 2009 / Published 26 March 2010)

Abstract

Results of experiment in JT-60U and design study in JT-60SA (Super Advanced) are described focusing on the development of advanced tokamak. In JT-60U, a high-integrated performance plasma with the normalized beta βN = 2.6, confinement enhancement factor HH98(y,2) = 1.0-1.1 and bootstrap current fraction fBS = 0.4 has been sustained for 25 s (14 times current diffusion time (τR)). Neoclassical tearing mode (NTM) with the poloidal mode number m = 2 and the toroidal mode number n = 1 has been stabilized with modulated electron cyclotron current drive (ECCD) in synchronization with the mode frequency (∼5 kHz). A high-beta plasma exceeding the ideal MHD limit without conducting wall has been sustained for 5 s (∼3τR) by suppressing resistive wall mode (RWM). In addition, two new instabilities in the high-beta regime, Energetic particle driven Wall Mode (EWM) and RWM precursor, have been observed. In JT-60SA, exploration of full non-inductive steady-state operation with current drive by neutral beams and electron cyclotron waves is planned. In addition, NTM control with ECCD and RWM suppression with external coils are planned.


Keywords

advanced tokamak, ITER, hybrid scenario, NTM, RWM, JT-60U, JT-60SA

DOI: 10.1585/pfr.5.S1003


References

  • [1] M. Shimada, D.J. Campbell, V. Mukhovatov et al., Nucl. Fusion 47, S1 (2007).
  • [2] Y. Kamada, T. Fujita, S. Ishida et al., Fusion Sci. Technol. 42, 185 (2002).
  • [3] S. Ide and the JT-60 Team, Nucl. Fusion 45, S48 (2005).
  • [4] A. Isayama and the JT-60 Team, Phys. Plasmas 12, 056117 (2005).
  • [5] H. Takenaga and the JT-60 Team, Nucl. Fusion 47, S563 (2007).
  • [6] N. Oyama, A. Isayama, T. Suzuki et al., Nucl. Fusion 47, 689 (2007).
  • [7] Y. Ikeda, A. Kasugai, S. Moriyama et al., Fusion Sci. Technol. 42, 435 (2002).
  • [8] A. Isayama, Y. Kamada, N. Hayashi et al., Nucl. Fusion 43, 1272 (2003).
  • [9] K. Nagasaki, A. Isayama, S. Ide et al., Nucl. Fusion 43, L7 (2003).
  • [10] N. Hayashi, A. Isayama, K. Nagasaki et al., J. Plasma Fusion Res. 80, 605 (2004).
  • [11] K. Nagasaki, A. Isayama, N. Hayashi et al., Nucl. Fusion 45, 1608 (2005).
  • [12] A. Isayama, N. Oyama, H. Urano et al., Nucl. Fusion 47, 773 (2007).
  • [13] S. Takeji, S. Tokuda, T. Fujita et al., Nucl. Fusion 42, 5 (2002).
  • [14] M. Takechi, G. Matsunaga, N. Aiba et al., Phys. Rev. Lett. 98, 055002 (2007).
  • [15] N. Oyama, A. Isayama, G. Matsunaga et al., Nucl. Fusion 49, 065026 (2009).
  • [16] D.R. Mikkelsen, Phys. Fluids B 1, 333 (1989).
  • [17] S. Moriyama, T. Kobayashi, A. Isayama et al., Nucl. Fusion 49, 085001 (2009).
  • [18] T. Kobayashi, M. Terakado, F. Sato et al., Plasma Fusion Res. 4, 037 (2009).
  • [19] A. Isayama, G. Matsunaga, T. Kobayashi et al., Nucl. Fusion 49, 055006 (2009).
  • [20] G. Matsunaga, Y. Sakamoto, N. Aiba et al., Fusion Energy 2008 (Proc. 22nd IAEA Fusion Energy Conf., Geneva (IAEA, Vienna)) IAEA-CN-165/EX/5-2 (2008); G. Matsunaga, N. Aiba, K. Shinohara et al., Phys. Rev. Lett. 103, 045001 (2009).
  • [21] S. Tokuda and T. Watanabe, Nucl. Fusion 6, 3012 (1999).
  • [22] M. Kikuchi, Fusion Energy 2006 (Proc. 21st IAEA Fusion Energy Conf., Chengdu (IAEA, Vienna)) IAEA-CN149/FT/2-5 (2006).
  • [23] M. Matsukawa, M. Kikuchi, T. Fujii et al., Fusion Eng. Des. 83, 795 (2008).
  • [24] E.J. Strait, Phys. Plasmas 1, 1415 (1994).

This paper may be cited as follows:

Akihiko ISAYAMA for the JT-60 team, Plasma Fusion Res. 5, S1003 (2010).