[Table of Contents]

Plasma and Fusion Research

Volume 5, S1001 (2010)

Regular Articles

High-Density, Low Temperature Ignited Operations in FFHR
Osamu MITARAI, Akio SAGARA1), Ryuichi SAKAMOTO1), Nobuyoshi OHYABU1), Akio KOMORI1) and Osamu MOTOJIMA1)
Liberal Arts Education Center, Kumamoto Campus, Tokai University, 9-1-1 Toroku, Kumamoto 862-8652, Japan
National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, 509-5292, Japan
(Received 6 January 2009 / Accepted 8 June 2009 / Published 26 March 2010)


New control method of the unstable operating point in the helical reactor FFHR makes the ignition study on the high density and low temperature operation possible. Proportional-integral-derivative (PID) control of the fueling with the error of the fusion power of e'DT(Pf) = −(Pfo − Pf) can stabilize the unstable operating point. Here Pfo(t) is the fusion power preset value and Pf(t) is the measured fusion power. Although the large parameter variation would lose its control due to the inherently unstable nature, it is possible to control the ignited operation by pellet injection with the pellet size between 12 mm and 16 mm. Unstable ignited operation is robust against disturbances such as impurity increments by fueling feedback alone. However, if the heating power feedback control is added, robustness to the disturbances is improved, and an operational regime with respect to the integration time and derivative time is expanded.


helical reactor, thermally unstable, high density, low temperature, ignition

DOI: 10.1585/pfr.5.S1001


  • [1] N. Ohyabu, T. Morisaki, S. Masuzaki et al., Phy. Rev. Lett. 97, 055002-1 (2006).
  • [2] R. Sakamoto et al., in 21th IAEA conference (Geneva, Switzerland, Oct 13, 2008) EX/8-1Ra.
  • [3] O. Mitarai, A. Sagara, N. Ohyabu, R. Sakamoto, A. Komori and O. Motojima, Plasma Fusion Res. 2, 021 (2007).
  • [4] O. Mitarai, A. Sagara, N. Ohyabu, R. Sakamoto, A. Komori and O. Motojima, Fusion Sci. Technol. 56, 1495 (2009).
  • [5] O. Mitarai, A. Sagara, N. Ashikawa, R. Sakamoto, M. Yoshinuma, M. Goto, T. Morisaki et al., in 21th IAEA conference (Geneva, Switzerland, Oct 13, FT/P3-19 2008).
  • [6] K. Maki, Fusion Technol. 10, 70 (1986).
  • [7] J. Mandrekas and W.M. Stacy Jr., Fusion Technol. 19, 57 (1991).
  • [8] E. Bebhan and U. Vieth, Nucl. Fusion 37, 251 (1996).
  • [9] W. Hui et al., Fusion Technol. 25, 318 (1994).
  • [10] E. Schuster et al., Fusion Sci. Technol. 43, 18 (2003).
  • [11] J.E. Vitela and J.J. Martinell, Plasma Phys. Control. Fusion 40, 295 (1998).
  • [12] U. Stroh, M. Murakami, R.A. Dory, H. Yamada, S. Okamura, F. Sano and T. Obiki, Nucl. Fusion 36, 1063 (1996).
  • [13] S. Sudo, Y. Takeiri, H. Zushi, F. Sano, K. Itoh, K. Kondo and A. Iiyoshi, Nucl. Fusion 30, 11 (1990).
  • [14] P.C. Souers, Hydrogen Properties for Fusion Energy (University of California Press, 1986) p.80.
  • [15] O. Mitarai, A. Oda, A. Sagara, et al., Fusion Eng. Des. 70, 247 (2004).
  • [16] O. Mitarai, A. Sagara et al., Nucl. Fusion 47, 1411 (2007).
  • [17] O. Mitarai and K. Muraoka, Nucl. Fusion 39, 725 (1999).
  • [18] H.P. Laqua, V. Erckmann et al., Phys. Rev. Lett. 78, 3467 (1997).

This paper may be cited as follows:

Osamu MITARAI, Akio SAGARA, Ryuichi SAKAMOTO, Nobuyoshi OHYABU, Akio KOMORI and Osamu MOTOJIMA, Plasma Fusion Res. 5, S1001 (2010).