[Table of Contents]

Plasma and Fusion Research

Volume 5, 013 (2010)

Regular Articles

Formation, Spatiotemporal Dynamics, and Control of Structures in Weakly Developed Drift Wave Turbulence
Olaf GRULKE1,2), Thomas WINDISCH1), Christian BRANDT1), Stefan ULLRICH1) and Thomas KLINGER1,2)
MPI for Plasma Physics, EURATOM Association, 17491 Greifswald, Germany
Ernst-Moritz-Arndt University, 17489 Greifswald, Germany
(Received 2 September 2008 / Accepted 8 December 2009 / Published 12 May 2010)


Experimental investigations of the evolution of the dynamics of drift wave turbulence in a linear high-density helicon plasma device are presented. The turbulent density fluctuations in the plasma edge are characterized by large intermittent events caused by radially propagating turbulent structures, which are formed in the radial plasma density region due to increased cross-field transport by a quasi-coherent drift wave mode. Similar to coherent drift wave modes the turbulent structures are correlated with fluctuating parallel currents. The role of fluctuating currents parallel to the ambient magnetic field in the evolution of coherent drift wave modes and drift turbulence is highlighted by investigations of the interaction of drift wave fluctuations with externally driven currents. Frequency pulling of coherent drift wave modes over a frequency range of up to 30% of the natural drift wave frequency is demonstrated. Furthermore, the drive of mode-selective current patterns allow for complete synchronization of drift wave turbulence and consequently leads to a strong reduction of the associated fluctuation-induced transport.


laboratory plasma, drift wave turbulence, turbulent structures, turbulence control

DOI: 10.1585/pfr.5.013


  • [1] C. Hidalgo, Plasma Phys. Control. Fusion 37, A53 (1995).
  • [2] J.A. Boedo, D. Rudakov, R. Moyer, S. Krasheninnikov, D. Whyte, G. McKee, G. Tynan, M. Schaffer, P. Stangeby, P. West, S. Allen, T. Evans, R. Fonck, E. Hollmann, A. Leonard, A. Mahdavi, G. Porter, M. Tillack and G. Antar, Phys. Plasmas 8, 4826 (2001).
  • [3] C. Lechte, S. Niedner and U. Stroth, New J. Phys. 4, 34.1 (2002).
  • [4] O.E. Garcia, V. Naulin, A.H. Nielsen and J.J. Rasmussen, Phys. Plasmas 12, 062309 (2005).
  • [5] W. Horton, Rev. Mod. Phys. 71, 735 (1999).
  • [6] J.L. Terry, R. Maqueda, C.S. Pitcher, S.J. Zweben, B. LaBombard, E.S. Marmar, A.Y. Pigarov and G. Wurden, J. Nucl. Mater. 290-293, 757 (2001).
  • [7] S.J. Zweben, D.P. Stotler, J.L. Terry, B. LaBombard, M. Greenwald, M. Muterspaugh, C.S. Pitcher, the Alcator C-Mod Group, K. Hallatschek, R.J. Maqueda, B. Rogers, J.L. Lowrance, V.J. Mastrocola and G.F. Renda, Phys. Plasmas 9, 1981 (2002).
  • [8] S.J. Zweben, R.J. Maqueda, D.P. Stotler, A. Keese, J. Boedo, C.E. Bush, S.M. Kaye, B. LeBlanc, J.L. Lowrance, V.J. Mastrocola, R. Maingi, N. Nishino, G. Renda, D.W. Swain, J.B. Wilgen and the NSTX Team, Nucl. Fusion 44, 134 (2004).
  • [9] J.A. Boedo, D.L. Rudakov, R.A. Moyer, G.R. McKee, R.J. Colchin, M.J. Schaffer, P.G. Stangeby, W.P. West, S.L. Allen, T.E. Evans, R.J. Fonck, E.M. Hollmann, S. Krasheninnikov, A.W. Leonard, W. Nevins, M.A. Mahdavi, G.D. Porter, G.R. Tynan, D.G. Whyte and X. Xu, Phys. Plasmas 10, 1670 (2003).
  • [10] D.A. D'Ippolito, J.R. Myra and S.I. Krasheninnikov, Phys. Plasmas 9, 222 (2002).
  • [11] D.A. D'Ippolito, J.R. Myra, S.I. Krasheninnikov, G.Q. Yu and A.Y. Pigarov, Contrib. Plasma Phys. 44, 205 (2004).
  • [12] O.E. Garcia, V. Naulin, A.H. Nielsen and J.J. Rasmussen, Phys. Rev. Lett. 92, 165003 (2004).
  • [13] D. Russell, D.A. D'Ippolito, J.R. Myra, W.M. Nevins and X.Q. Xu, Phys. Rev. Lett. 93, 265001 (2004).
  • [14] O.E. Garcia, J. Horacek, R.A. Pitts, A.H. Nielsen, W. Fundamenski, J.P. Graves, V. Naulin and J.J. Rasmussen, Plasma Phys. Control. Fusion 48, L1 (2006).
  • [15] O. Grulke, J.L. Terry, B. LaBombard and S.J. Zweben, Phys. Plasmas 13, 012306 (2006).
  • [16] B.D. Scott, Plasma Phys. Control. Fusion 45, A385 (2003).
  • [17] T.K. Chu, H.W. Hendel and P.A. Politzer, Phys. Rev. Lett. 19, 1110 (1967).
  • [18] H.W. Hendel, B. Coppi, F. Perkins and P.A. Politzer, Phys. Rev. Lett. 18, 439 (1967).
  • [19] H.W. Hendel, T.K. Chu and P.A. Politzer, Phys. Fluids 11, 2426 (1968).
  • [20] R.F. Ellis and R.W. Motley, Phys. Rev. Lett. 27, 1496 (1971).
  • [21] T. Klinger, A. Latten, A. Piel, G. Bonhomme, T. Pierre and T.D. de Wit, Phys. Rev. Lett. 79, 3913 (1997).
  • [22] O. Grulke, T. Klinger and A. Piel, Phys. Plasmas 6, 788 (1999).
  • [23] C. Schröder, O. Grulke, T. Klinger and V. Naulin, Phys. Plasmas 12, 42103 (2005).
  • [24] C.M. Franck, O. Grulke and T. Klinger, Phys. Plasmas 9, 3254 (2002).
  • [25] O. Grulke, S. Ullrich, T. Windisch and T. Klinger, Plasma Phys. Control. Fusion 49, B247 (2007).
  • [26] A.M. Keesee and E.E. Scime, Plasma Sources Sci. Technol. 16, 742 (2007).
  • [27] T. Windisch, O. Grulke and T. Klinger, Phys. Plasmas 13, 122303 (2006).
  • [28] V.I. Demidov, S.V. Ratynskaia, R.J. Armstrong and K. Rypdal, Phys. Plasmas 6, 350 (1999).
  • [29] R. Schrittwieser, C. Ionita, P. Balan, R. Gstrein, O. Grulke, T. Windisch, C. Brandt, T. Klinger, R. Madani, G. Amarandei and A.K. Sarma, Rev. Sci. Instrum. 79, 083508 (2008).
  • [30] H. Johnsen, H.L. Pécseli and J. Trulsen, Phys. Fluids 30, 2239 (1987).
  • [31] C. Schröder, O. Grulke, T. Klinger and V. Naulin, Phys. Plasmas 11, 4249 (2004).
  • [32] F. Brochard, T. Windisch, O. Grulke and T. Klinger, Phys. Plasmas 13, 122305 (2006).
  • [33] G.R. Tynan, C. Holland, J.H. Yu, A. James, D. Nishijima, M. Shimada and N. Taheri, Plasma Phys. Control. Fusion 48, S51 (2006).
  • [34] O.E. Garcia, N.H. Bian, V. Naulin, A.H. Nielsen and J.J. Rasmussen, Phys. Plasmas 12, 090701 (2005).
  • [35] A. Lichtenberg and M. Lieberman, Regular and Chaotic Dynamics (Springer, 1992).
  • [36] C. Schöder, T. Klinger, D. Block, A. Piel, G. Bonhomme and V. Naulin, Phys. Rev. Lett. 86, 5711 (2001).

This paper may be cited as follows:

Olaf GRULKE, Thomas WINDISCH, Christian BRANDT, Stefan ULLRICH and Thomas KLINGER, Plasma Fusion Res. 5, 013 (2010).