[Table of Contents]

Plasma and Fusion Research

Volume 5, 007 (2010)

Regular Articles


Weibel Instability in a Bi-Maxwellian Laser Fusion Plasma
Abdelaziz SID, Abdennasser GHEZAL1), Azzeddine SOUDANI2) and Mohamed BEKHOUCHE
Laboratoire de Physique des Rayonnements et leurs interactions avec la Matière (PRIMALAB), Département de Physique, Faculté des Sciences, Université de Batna, Batna, 05000 DZ, Algeria
1)
Commissariat à l'Energie Atomique, Centre de Recherche Nucléaire de Draria, Division de Sûreté Nucléaire et Radioprotection, Draria, Alger, Algeria
2)
Laboratoire de Physique Energétique Appliquée, Département de Physique, Faculté des Sciences, Université de Batna, Batna, 05000 DZ, Algeria
(Received 13 November 2009 / Accepted 14 January 2010 / Published 3 March 2010)

Abstract

In this paper, the Weibel instability, driven by the plasma temperature anisotropy, in the corona of high intense laser fusion plasma is studied. The unperturbed electronic distribution function, f, of the anisotropic corona is supposed to be a bi-Maxwellian. That T = T ± WO, where WO = ¼ mevO2 is the averaged electron quiver energy in the laser electric field. The first and the second anisotropies of f projected on the Legendre polynomials are calculated as a function of the scaling parameter, WO / T. The Weibel instability parameters are explicitly calculated as a function of the scaling parameter. For typical parameters of the laser pulse and the fusion plasma, it has been shown that very unstable Weibel modes, γ ≳ 1011 s−1, can be excited in the corona.


Keywords

inertial fusion, laser created plasma, electron oscillation, Weibel instability, scaling law

DOI: 10.1585/pfr.5.007


References

  • [1] E.S. Weibel, Phys. Rev. Lett. 2, 83 (1959).
  • [2] O. Nobuhiro and H. Makoto, J. Korean Astro. Soc. 37, 547 (2004).
  • [3] B. Shokri and M. Ghorbanalili, Phys. Plasmas 11, 5398 (2004).
  • [4] J.M. Wallace and E.M. Epperlein, Phys. Fluids B 3, 1579 (1991).
  • [5] A. Ramani and J. Laval, Phys. Fluids 28, 980 (1978).
  • [6] K. Bendib, A. Bendib and A. Sid, Laser Part. Beams 16, 423 (1998).
  • [7] A. Bendib, K. Bendib and A. Sid, Phys. Rev. E 55, 7522 (1997).
  • [8] H. Hora, Laser Plasma and Nuclear Energy (New York Plenum Press. 1975).
  • [9] L. Ginsburg, Propagation of Electromagnetic Waves in Plasmas (Cordon and Breach, N. Y., 1960).
  • [10] A. Sid, Phys. Plasmas 10, 214 (2003).
  • [11] S.I. Braginski, in Reviews of Plasmas Physics (M.A. Leonvitch, Consultant Bureau, N. Y. 1985, Vol. 1).
  • [12] V.P. Silin, Sov. Phys. JETP 20, 1510 (1965).
  • [13] A. Bruce Langdon, Phys. Rev. Lett. 44, 575 (1980).
  • [14] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).
  • [15] J.M. Wallace, et al., Phys. Fluids 30, 4, 1085 (1987).
  • [16] J.P. Matte, A. Bendib and J.F. Luciani, Phys. Rev. Lett. 58, 2067 (1987).
  • [17] R. Fabro, C.F. Max and E. Fabre, Phys. Fluids 28, 1463 (1985).

This paper may be cited as follows:

Abdelaziz SID, Abdennasser GHEZAL, Azzeddine SOUDANI and Mohamed BEKHOUCHE, Plasma Fusion Res. 5, 007 (2010).