[Table of Contents]

Plasma and Fusion Research

Volume 4, 043 (2009)

Rapid Communications


Axial Profile of Balmer-Alpha Emission near a Tungsten Target in the Compact PWI Simulator APSEDAS
Yuta HIGASHIZONO, Mizuki SAKAMOTO, Toshimasa MIYAZAKI1), Kazuma OGAWA1), Kazuki OZAKI1), Yousuke NAKASHIMA2), Tatsuo SHOJI3), Naoko ASHIKAWA4), Masayuki TOKITANI4), Kazutoshi TOKUNAGA, Suguru MASUZAKI4), Kaoru OHYA5), Akio SAGARA4) and Kohnosuke SATO
Advanced Fusion Research Center, Research Institute for Applied Mechanics, Kyushu University,Kasuga, Fukuoka 816-8580, Japan
1)
Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
2)
Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
3)
Department of Engineering, Nagoya University, Nagoya 464-8603, Japan
4)
National Institute for Fusion Science, Toki, Gifu 509-5292, Japan
5)
Department of Electrical and Electronic Engineering, University of Tokushima, Tokushima 770-8506, Japan
(Received 3 April 2009 / Accepted 8 August 2009 / Published 24 September 2009)

Abstract

The axial profile of Balmer-alpha emission near a tungsten target has been measured in the compact plasma wall interaction (PWI) simulator Advanced PWI Simulation Experimental Device and Analysis System (APSEDAS). Axial Hα emission decreases toward the target at two levels, a steep gradient within 10 mm of the target and a shallow gradient more than 10 mm away. The structure of the Hα profile within 40 mm of the target is the same even though the electron density changes by one order of magnitude and the neutral pressure changes by a factor of three. On the other hand, the Hα profile more than 40 mm from the target gradually increases with increasing hydrogen filling pressure, although it does not change with the density in the case of constant filling pressure.


Keywords

CCD camera, tungsten, Hα emission, edge plasma, neutral hydrogen

DOI: 10.1585/pfr.4.043


References

  • [1] H. Kawashima et al., Fusion Eng. Des. 83, 1643 (2008).
  • [2] M. Sakamoto et al., Nucl. Fusion 42, 165 (2002).
  • [3] H. Matsuura et al., J. Nucl. Mater. 363-365, 806 (2007).
  • [4] T. Tanabe et al., J. Nucl. Mater. 266-269, 703 (1999).
  • [5] K. Shimada et al., J. Nucl. Mater. 290-293, 478 (2001).
  • [6] K. Kobayashi et al., J. Nucl. Mater. 266-269, 850 (1999).
  • [7] M. Aramaki et al., Jpn. J. Appl. Phys. 43, 1164 (2004).
  • [8] T. Shoji et al., Plasma Sources Sci. Tech. 2, 5 (1993).
  • [9] T. Fujimoto et al., J. Appl. Phys. 66, 2315 (1989).
  • [10] T. Lunt et al., Phys. Rev. Lett. 100, 175004 (2008).

This paper may be cited as follows:

Yuta HIGASHIZONO, Mizuki SAKAMOTO, Toshimasa MIYAZAKI, Kazuma OGAWA, Kazuki OZAKI, Yousuke NAKASHIMA, Tatsuo SHOJI, Naoko ASHIKAWA, Masayuki TOKITANI, Kazutoshi TOKUNAGA, Suguru MASUZAKI, Kaoru OHYA, Akio SAGARA and Kohnosuke SATO, Plasma Fusion Res. 4, 043 (2009).