[Table of Contents]

Plasma and Fusion Research

Volume 4, 041 (2009)

Regular Articles

Laser Energy Scaling Law for the Yield of Neutrons Generated by Intense Femtosecond Laser-Cluster Interactions
Shuji SAKABE, Masaki HASHIDA, Shigeki TOKITA and Kazuto OTANI
Advanced Research Center for Beam Science, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-001, Japan
Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
(Received 3 June 2009 / Accepted 16 July 2009 / Published 16 September 2009)


In order to discuss the feasibility of compact neutron sources for scientific, medical and industrial applications, the yield of laser-produced neutrons is scaled by the laser energy. The laser energy scaling law of the neutron yield is derived from the laser intensity scaling law for the energy and the number of laser produced ions. High-energy ions are generated by Coulomb explosion of clusters through intense femtosecond laser-cluster interactions. The reactions of D(D,n)He generating high yield even by relatively low deuterium energy and Li(p,n)Be generating relatively low energy neutrons are discussed. The neutron yield of D(D,n)He determines the potential for using compact neutron sources with the aid of modern laser technology. In addition, p(Li,n)Be shows much higher yield than Li(p,n)Be with the assumption of Coulomb explosion of a cluster with a diameter of 500 nm.


intense femtosecond laser, cluster, Coulomb explosion, neutron

DOI: 10.1585/pfr.4.041


  • [1] S. Sakabe, T. Mochizuki, T. Yabe, K. Mima and C. Yamanaka, Phys. Rev. A 26(4), 2159 (1982).
  • [2] G.A. Mourou, C.P.J. Garty, and M.D. Perry, Phys. Today 51, 22 (1988); M.D. Perry and G.A. Mourou, Science 264, 917 (1994); S. Sakabe, Rev. Laser Eng. 25, 855 (1997).
  • [3] C. Yamanaka and S. Sakabe, Rev. Laser Eng. 30, 185 (2002); S. Sakabe, T. Iida and A. Takahashi, J. Atomic Energy Soc. Japan, 43(10), 996 (2001).
  • [4] T. Ditmire, T. Donnely, A.M. Rubenchik, R.W. Falcone and M.D. Perry, Phys. Rev. A 53, 3379 (1996); T. Ditmire, J.W.G. Tisch, E. Springate, M.B. Mason, N. Hay, R.A. Smith, J. Marangos and M.H.R. Hutchinson, Nature (London) 386, 54 (1997); T. Ditmire, E. Springate, J.W.G. Tisch, Y.L. Shao, M.B. Mason, N. Hay, J.P. Marangos, and M.H.R. Hutchinson, Phys. Rev. A 57, 369 (1998).
  • [5] References related to laser cluster interactions are listed in the Reference section of [6].
  • [6] S. Sakabe, S. Shimizu, M. Hashida, F. Sato, T. Tsuyukushi, K. Nishihara, S. Okihara, T. Kagawa,Y. Izawa, K. Imasaki and T. Iida, Phys. Rev. A 69(2), 23203 (2004); S. Sakabe, K. Shirai, M. Hashida, S. Shimizu and S. Masuno, Phys. Rev. A 74, 043205-1-5 (2006).
  • [7] A. Yogo, H. Daido H, A. Fukumi, Z. Li, K. Ogura, A. Sagisaka, A.S. Pirozhkov, S. Nakamura, Y. Iwashita, T. Shirai, A. Noda A, Y. Oishi, T. Nayuki T, T. Fujii, K. Nemoto, I.W. Choi, J.H. Sung, D.K. Ko DK, J. Lee, M. Kaneda and A. Itoh, Nucl. Phys. Plasmas 14(4), 043104 (2007).
  • [8] T. Zh. Esirkepov, S.V. Bulanov, K. Nishihara, T. Tajima, F.. Pegoraro, V.S. Khoroshkov, K. Mima, H. Daido, Y. Kato, Y. Kitagawa, K. Nagai and S. Sakabe, Phys. Rev. Lett. 89(17), 175003-1 (2002).
  • [9] K. Nishihara, H. Amitani, M. Murakami, S.V. Bulanov and T. Zh. Esirkepov, Nucl. Instrum. Methods Phys. Res. A 464, 98 (2001).
  • [10] J. Zweiback, T.E. Cowan, J.H. Hartley, R. Howell, K.B. Wharton, J.K. Crane, V.P. Yanovsky and G. Hays, Phys. Plasma 9(7), 3108 (2002).
  • [11] K.W. Madison, P.K. Patel, M. Allen, D. Price, R. Fitzpatrick and T. Ditmire, Phys. Rev. A 70(5), 053201 (2004).

This paper may be cited as follows:

Shuji SAKABE, Masaki HASHIDA, Shigeki TOKITA and Kazuto OTANI, Plasma Fusion Res. 4, 041 (2009).