[Table of Contents]

Plasma and Fusion Research

Volume 4, 002 (2009)

Regular Articles


Development of Advanced Pellet Injector Systems for Plasma Fueling
Ryuichi SAKAMOTO, Hiroshi YAMADA and LHD experimental group
National Institute for Fusion Science, Toki, Gifu 509-5292, Japan
(Received 21 August 2008 / Accepted 25 November 2008 / Published 29 January 2009)

Abstract

Two types of solid hydrogen pellet injection systems have been developed, and plasma refueling experiments have been performed using these pellet injectors. One is an in-situ pipe-gun type pellet injector, which has the simplest design of all pellet injectors. This in-situ pipe-gun injector has 10 injection barrels, each of which can independently inject cylindrical solid hydrogen pellets (3.4 and 3.8 mm in diameter and length, respectively) at velocities up to 1,200 m/s. The other is a repetitive pellet injector with a screw extruder, which can form a 3.0 mmφ solid hydrogen rod continuously at extrusion rates up to 55 mm/s. This extruder allows consecutive pellet injection up to 11 Hz without time limit. Both of these pellet injectors employ compact cryo-coolers to solidify hydrogen; therefore, they can be operated using only electrical input instead of a complicated liquid helium supply system. In particular, using a combination of the repetitive pellet injector with cryo-coolers provides a steady-state capability with minimum maintenance.


Keywords

solid hydrogen pellet, fueling, cryo-cooler, pellet injector, steady state operation

DOI: 10.1585/pfr.4.002


References

  • [1] S.L. Milora, Nucl. Fusion 35, 657 (1995).
  • [2] B. Pégourié, Plasma Phys. Control. Fusion 49, R87 (2007).
  • [3] S.K. Combs, Rev. Sci. Instrum. 64, 1679 (1993).
  • [4] J. Urbahn et al., Proceedings of 15th Symposium on Fusion Engineering Vol. 1, 44 (1993).
  • [5] S.K. Combs et al., Rev. Sci. Instrum. 60, 2697 (1989).
  • [6] C. Andelfinger et al., Rev. Sci. Instrum. 64, 983 (1993).
  • [7] S.K. Combs et al., Rev. Sci. Instrum. 66, 2736 (1995).
  • [8] Y. Oda et al., Vacuum 41, 1510 (1990).
  • [9] K. Kizu et al., Fusion Sci. Technol. 42, 396 (2002).
  • [10] H. Yamada et al., Fusion Eng. Des. 49-50, 915 (2000).
  • [11] H. Yamada et al., Fusion Eng. Des. 69, 11 (2003).
  • [12] P.C. Souers, Hydrogen properties for fusion energy (Berkeley : University of California Press, 1986).
  • [13] J. Lafferranderie et al., Proceedings of 14th Symposium on Fusion Technology Vol. 2, 1367 (1986).
  • [14] R. Sakamoto et al., Nucl. Fusion 41, 381 (2001).
  • [15] R. Sakamoto et al., Plasma Fusion Res. 2, 047 (2007).
  • [16] S.K. Combs et al., Rev. Sci. Instrum. 56, 1173 (1985).
  • [17] Y. Oda et al., Proceedings of 18th Symposium on Fusion Technology Vol. 1, 661 (1994).
  • [18] I. Viniar et al., Instrum. Exp. Tech. 43, 722 (2000).
  • [19] I. Viniar et al., Fusion Eng. Des. 58-59, 295 (2001).
  • [20] L.R. Baylor et al., Phys. Plasmas 12, 056103 (2005).
  • [21] L.R. Baylor et al., Nucl. Fusion 47, 443 (2007).
  • [22] L.D. Landau and E.M. Lifshitz, Fluid mechanics (Pergamon Press, 1987).
  • [23] R. Sakamoto et al., Nucl. Fusion 46, 884 (2006).
  • [24] T. Seki et al., AIP Conf. Proc. 787, 98 (2005).

This paper may be cited as follows:

Ryuichi SAKAMOTO, Hiroshi YAMADA and LHD experimental group, Plasma Fusion Res. 4, 002 (2009).