[Table of Contents]

Plasma and Fusion Research

Volume 3, S1024 (2008)

Regular Articles

Activation Analysis for LHD Experiments with Deuterium Gases
Kiyohiko NISHIMURA, Hirokuni YAMANISHI, Katsumi HAYASHI1) and Akio KOMORI
National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan
Hitachi-GE Nuclear Energy, Ltd., 3-1-1 Saiwai-cho, Hitachi 317-0073, Japan
(Received 16 November 2007 / Accepted 25 February 2008 / Published 25 June 2008)


Identification of radionuclides obtained from deuterium experiments and evaluation of dose rate level were performed on the structural materials of the Large Helical Device and the Experimental Hall. Energies of neutron sources are 2.45 MeV (D-D reaction) and 14 MeV (D-T reaction). Neutron fluence was calculated using the two-dimensional transport code DOT-3.5. Generation of radionuclides was calculated using the CINAC code. Radionuclides of 93mNb, 63Ni, and 60Co for helical coils, 55Fe and 60Co for stainless steel, 55Fe, 60Co, and 93mNb for poloidal coils, and 40K and 55Fe for floor concrete were dominant after a series of experiments with deuterium gases. Evaluation of dose rate level for the structural materials and air were performed taking into account a current experimental schedule.


Large Helical Device, deuterium operation, superconducting coil, radioactivity, dose rate, DOT-3.5 code, CINAC code, cobalt 60, argon 41

DOI: 10.1585/pfr.3.S1024


  • [1] H. Ninomiya and JT-60 Team, Phys. Fluids B4, 2070 (1992).
  • [2] M. Shimada and JT-60 Team, in Plasma Phys. and Contr. Nucl. Fus. Res 1992 (Proc. 14 Int. Conf. Wurzburg, 1992), Vol.1, IAEA, Vienna, 57 (1992).
  • [3] G.L. Schmidt, S.L. Milora, V. Arunasalam, M.G. Bell et al., in Plasma Phys. and Contr. Nucl. Fus. Res 1986 (Proc. 11 Int. Conf. Kyoto, 1990), Vol.1, IAEA, Vienna, 171 (1986).
  • [4] JET Team, Nucl. Fusion 32, 187 (1992).
  • [5] A. Iiyoshi, M. Fujiwara, O. Motojima, N. Ohyabu and K. Yamazaki, Fusion Technol. 17, 169 (1990).
  • [6] O. Motojima, K. Akaishi, M. Asao, K. Fujii et al., in Plasma Phys. and Contr. Nucl. Fus. Res 1990 (Proc. 13 Int. Conf. Washington DC, 1990), Vol.3, IAEA, Vienna, 513 (1990).
  • [7] A. Iiyoshi, A. Komori, A. Ejiri, M. Emoto et al., Nucl. Fusion 39, 1245 (1999).
  • [8] M. Fujiwara, H. Yamada, A. Ejiri, M. Emoto et al., Nucl. Fusion 39, 1659 (1999).
  • [9] N. Miya, T. Nishitani and H. Takeuchi, Nucl. Sci. Technol. 31, 398 (1994).
  • [10] R.G. Alsmiller, Jr., J. Barish, R.T. Santoro, R.A. Lillie et al., Nucl. Technol. 48, 187 (1980).
  • [11] O.N. Jarvis, G. Sadler and A. Avery, JET-R (1988).
  • [12] H. Handa, K. Hayashi, Y. Ogawa, Y. Sakuma, H. Obayashi et al., Fusion Eng. Des. 17, 335 (1991).
  • [13] H. Handa, K. Hayashi, H. Yamanishi, Y. Sakuma, H. Kaneko et al., Fusion Eng. Des. 28, 515 (1995).
  • [14] W.A. Rhoades and F.R. Mynatt, Tech. Memo. ORNL/TM 4280, Oak Ridge National Laboratory, Oak Ridge, TN, (1973).
  • [15] J. Fukumoto, Nucl. Sci. Technol. 23, 97 (1986).
  • [16] J.M. Dawson, H.P. Furth, F.H. Teney, Phys. Rev. Lett. 26, 1156 (1971).
  • [17] K. Maki, K. Kosako, Y. Seki, H. Kawasaki, Rep. JAERIM 91-072, Japan Atomic Energy Research Institute, June (1991).

This paper may be cited as follows:

Kiyohiko NISHIMURA, Hirokuni YAMANISHI, Katsumi HAYASHI and Akio KOMORI, Plasma Fusion Res. 3, S1024 (2008).