[Table of Contents]

Plasma and Fusion Research

Volume 3, S1021 (2008)

Regular Articles


Spatiotemporal Behavior of Drift Waves in LMD-U
Takuma YAMADA, Sanae -I. ITOH, Kenichiro TERASAKA1), Naohiro KASUYA2), Yoshihiko NAGASHIMA, Shunjiro SHINOHARA1), Takashi MARUTA1), Masatoshi YAGI, Shigeru INAGAKI, Yoshinobu KAWAI, Akihide FUJISAWA2) and Kimitaka ITOH2)
Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580, Japan
1)
Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga 816-8580, Japan
2)
National Institute for Fusion Science, Toki 509-5292, Japan
(Received 10 November 2007 / Accepted 17 February 2008 / Published 6 August 2008)

Abstract

In the LMD-U linear magnetized plasma, fluctuation measurements have been performed with multi-channel poloidal Langmuir probe arrays to investigate the spatiotemporal behaviors of drift wave turbulence. Two-dimensional (poloidal mode number-frequency) power spectrum showed not only fluctuation peaks but also the existence of a broadband fluctuation. The broadband fluctuation developed at high poloidal mode number and high frequency regions and not along the linear dispersion relation curve of drift wave modes. It showed shorter correlation time and poloidal length than the peaked fluctuations. Two-dimensional axial coherence was measured with two poloidal probe arrays separated in the axial direction. The axial coherence was strong for both the broadband fluctuation and peak fluctuations, suggesting the quasi-two-dimensional structure of the drift wave turbulence.


Keywords

linear plasma, drift wave, turbulence, broadband fluctuation, quasi-two-dimensional structure

DOI: 10.1585/pfr.3.S1021


References

  • [1] P.H. Diamond et al., Plasma Phys. Control. Fusion 47, R35 (2005).
  • [2] A. Yoshizawa, S.-I. Itoh and K. Itoh, Plasma and Fluid Turbulence, Theory and Modelling (Institute of Physics Publishing, Bristol and Philadelphia, 2003).
  • [3] A. Latten, T. Klinger and A. Piel, Rev. Sci. Instrum. 66, 3254 (1995).
  • [4] T. Klinger et al., Phys. Rev. Lett. 79, 3913 (1997).
  • [5] M. Kono and M.Y. Tanaka, Phys. Rev. Lett. 84, 4369 (2000).
  • [6] C. Schröder et al., Phys. Rev. Lett. 86, 5711 (2001).
  • [7] T. Kaneko, H. Tsunoyama and R. Hatakeyama, Phys. Rev. Lett. 90, 125001 (2003).
  • [8] V. Sokolov and A.K. Sen, Phys. Rev. Lett. 92, 165002 (2004).
  • [9] M.J. Burin et al., Phys. Plasmas 12, 052320 (2005).
  • [10] G.R. Tynan et al., Plasma Phys. Control. Fusion 48, S51 (2006).
  • [11] C. Lechte, S. Niedner and U. Stroth, New J. Phys. 4, 34 (2002).
  • [12] Y. Nagashima et al., Phys. Rev. Lett. 95, 095002 (2005).
  • [13] Y. Hamada et al., Phys. Rev. Lett. 96, 115003 (2006).
  • [14] F.M. Poli et al., Phys. Plasmas 13, 102104 (2006).
  • [15] U. Stroth et al., Phys. Plasmas 11, 2558 (2004).
  • [16] S. Shinohara et al., Proc. 28th Int. Conf. on Phenomena in Ionized Gases (Institute of Plasma Physics AS CR, Prague, 2007), 1P04-08.
  • [17] K. Terasaka et al., Plasma Fusion Res. 2, 031 (2007).
  • [18] N. Kasuya et al., J. Phys. Soc. Jpn. 76, 044501 (2007).
  • [19] T. Yamada et al., Plasma Fusion Res. 2, 051 (2007).
  • [20] T. Yamada et al., Rev. Sci. Instrum. 78, 123501 (2007).

This paper may be cited as follows:

Takuma YAMADA, Sanae -I. ITOH, Kenichiro TERASAKA, Naohiro KASUYA, Yoshihiko NAGASHIMA, Shunjiro SHINOHARA, Takashi MARUTA, Masatoshi YAGI, Shigeru INAGAKI, Yoshinobu KAWAI, Akihide FUJISAWA and Kimitaka ITOH, Plasma Fusion Res. 3, S1021 (2008).