[Table of Contents]

Plasma and Fusion Research

Volume 3, S1006 (2008)

Regular Articles


Transport Dynamics and Multi-Scale Coupling of Turbulence in LHD
Shigeru INAGAKI, Naoki TAMURA1), Yoshihiko NAGASHIMA, Tokihiko TOKUZAWA1), Takuma YAMADA, Katsumi IDA1), Takashi MARUTA2), Shin KUBO1), Kenichi TERASAKA2), Takashi SHIMOZUMA1), Yoshio NAGAYAMA1), Kazuo KAWAHATA1), Akio KOMORI1), Shunjiro SHINOHARA2), Akihide FUJISAWA1), Masatoshi YAGI, Yoshinobu KAWAI, Sanae-I. ITOH, Kimitaka ITOH1) and the LHD experimental group
RIAM, Kyushu University, 6-1 Kasuga-Koen, Kasuga 816-8580, Japan
1)
National Institute for Fusion Science,322-6 Oroshi-cho, Toki 509-5292, Japan
2)
IGSES, Kyushu University, 6-1 Kasuga-Koen, Kasuga 816-8580, Japan
(Received 16 November 2007 / Accepted 27 March 2008 / Published 5 August 2008)

Abstract

Spatiotemporal correlation of heat transport and micro- to meso- scale or macro-scale coupling of plasma turbulence are investigated in LHD plasmas, where fast propagation of a cold pulse and a non-local temperature rise are observed. Evidence of a timescale shorter than the diffusion time and a spatial scale longer than the micro-turbulence correlation length between core heat fluxes and edge temperature gradients is found. At the same time, an envelope of turbulent density fluctuations is also found to be modulated. Observation of low frequency (≤ 2 kHz) amplitude modulation of density fluctuation suggests the existence of meso- to macro-scale turbulent structures in the plasma, in which a non-local temperature rise takes place. Relationships between the turbulence with long radial correlation length and the edge-core coupling of heat transport are discussed.


Keywords

non-local transport, fluctuation, reflectometry, LHD

DOI: 10.1585/pfr.3.S1006


References

  • [1] H. Maassberg et al., Phys. Fluids B 5, 3627 (1993).
  • [2] F. Castejòn et al., Nucl. Fusion 42, 271 (2002).
  • [3] B. P. van Milligen et al., Nucl. Fusion 42, 787 (2002).
  • [4] V. V. Parail et al., Nucl. Fusion 37, 481 (1997).
  • [5] U. Stroth et al., Plasma Phys. Control. Fusion 38, 1087 (1996).
  • [6] K. W. Gentle et al., Phys. Rev. Lett. 74, 3620 (1995).
  • [7] M. W. Kissick et al., Nucl. Fusion 38, 821 (1998).
  • [8] P. Mantica et al., Phys. Rev. Lett. 82, 5048 (1999).
  • [9] S. Inagaki et al., Plasma Phys. Control. Fusion 48, A251 (2006).
  • [10] N. Tamura et al., Nucl. Fusion 47, 449 (2007).
  • [11] M. N. Rosenbluth and F. L. Hinton, Phys. Rev. Lett. 80, 724 (1998).
  • [12] Z. Lin et al., Science 281, 1835 (1998).
  • [13] K. Itoh, P. H. Diamond, S.-I. Itoh and T. S. Hahm, Plasma Phys. Control. Fusion 47, R5 (2005).
  • [14] M. Yagi et al., Plasma Fusion Res. 2, 0251 (2007).
  • [15] F. Ryter et al., Phys. Rev. Lett. 86, 5498 (2001).
  • [16] S. Inagaki et al., Nucl. Fusion 46, 133 (2006).
  • [17] O. Motojima et al., Nucl. Fusion 43, 1674 (2003).
  • [18] S. Sudo et al., Plasma Phys. Control. Fusion 44, 129 (2002).
  • [19] H. Yamada et al., Nucl. Fusion 43, 749 (2003).
  • [20] K. Kawahata et al., Rev. Sci. Instrum. 74, 1449 (2003).
  • [21] K. Ida et al., Phys. Rev. Lett. 96, 125006 (2006).
  • [22] T. Iwasaki et al., J. Phys. Soc. Japan 68, 478 (1999).
  • [23] A. Fujisawa et al., Phys. Rev. Lett. 93, 165002 (2004).
  • [24] Y. Nagashima et al., Plasma Phys. Control. Fusion 49, 1611 (2007).
  • [25] S.-I. Itoh and K. Itoh, Plasma Phys. Control. Fusion 43, 1055 (2001).

This paper may be cited as follows:

Shigeru INAGAKI, Naoki TAMURA, Yoshihiko NAGASHIMA, Tokihiko TOKUZAWA, Takuma YAMADA, Katsumi IDA, Takashi MARUTA, Shin KUBO, Kenichi TERASAKA, Takashi SHIMOZUMA, Yoshio NAGAYAMA, Kazuo KAWAHATA, Akio KOMORI, Shunjiro SHINOHARA, Akihide FUJISAWA, Masatoshi YAGI, Yoshinobu KAWAI, Sanae-I. ITOH, Kimitaka ITOH and the LHD experimental group, Plasma Fusion Res. 3, S1006 (2008).