[Table of Contents]

Plasma and Fusion Research

Volume 3, S1005 (2008)

Regular Articles


Impurity Retention Effect in the Edge Ergodic Layer of the Large Helical Device
Masahiro KOBAYASHI, Yuehe FENG1), Sigeru MORITA, Kuninori SATO, Malay Bikas CHOWDHURI2), Suguru MASUZAKI, Mamoru SHOJI, Yukio NAKAMURA, Masayuki TOKITANI, Nobuyoshi OHYABU, Motoshi GOTO, Tomohiro MORISAKI, Ichihiro YAMADA, Kazumichi NARIHARA, Naoko ASHIKAWA, Hiroshi YAMADA, Akio KOMORI, Osamu MOTOJIMA and the LHD experimental group
National Institute for Fusion Science, Toki 509-5292, Japan
1)
Max-Planck-Institute fuer Plasmaphysik, Wendelsteinstrasse 1, D-17491 Greifswald, Germany
2)
Graduate University for Advanced Studies, Toki, Gifu 509-5292, Japan
(Received 30 November 2007 / Accepted 12 March 2008 / Published 5 August 2008)

Abstract

The impurity transport characteristics in the ergodic layer of the Large Helical Device (LHD) are analyzed using the 3D edge transport code (EMC3-EIRENE), in comparison with the experimental data. The 3D modeling predicts the impurity retention (screening) in the ergodic layer at the high-density plasma. It is found that the edge surface layer plays an important role in impurity retention, where the friction force significantly dominates over the thermal force. The line intensity measurements of CIII to CVI show consistent behavior with the modeling, indicating impurity retention in the ergodic layer. The applicability of the model for high-Z impurity is also discussed, and it is found that the experimental data is consistent with the results of edge transport modeling.


Keywords

ergodic layer, impurity transport, LHD

DOI: 10.1585/pfr.3.S1005


References

  • [1] ITER Physics Basis Editors, Chapter 4, “Power and particle control,” Nucl. Fusion 47, S203 (2007).
  • [2] P.C. Stangeby and J.D. Elder, Nucl. Fusion 35, 1391 (1995).
  • [3] C. Breton et al., Nucl. Fusion 31, 1774 (1991).
  • [4] M.Z. Tokar et al., Plasma Phys. Control. Fusion 39, 569 (1997).
  • [5] M.Z. Tokar, Phys. Plasmas 6, 2808 (1999).
  • [6] D.Kh. Morozov and J.J.E. Herrera, Phys. Plasmas 2, 1540 (1995).
  • [7] H. Yamada et al., Plasma Phys. Control. Fusion 49, B487 (2007).
  • [8] N. Ohyabu et al., Nucl. Fusion 34, 387 (1994).
  • [9] Y. Feng et al., Contrib. Plasma Phys. 44, 57 (2004).
  • [10] D. Reiter et al., Fusion Sci. Technol. 47, 172 (2005).
  • [11] P.C. Stangeby, The plasma boundary of magnetic fusion devices, (Institute of Plasma Publishing, 2000) chap.6.
  • [12] Y. Feng et al., Nucl. Fusion 46, 807 (2006).
  • [13] Yu. L. Igitkhanov, Contrib. Plasma Phys. 28, 477 (1988).
  • [14] S. I. Krashenninikov et al., Nucl. Fusion 31, 1455 (1991).
  • [15] M.B. Chowdhuri, S. Morita and M. Goto, Appl. Optics 47, 135 (2008).
  • [16] Y. Nakamura et al., Nucl. Fusion 43, 219 (2003).

This paper may be cited as follows:

Masahiro KOBAYASHI, Yuehe FENG, Sigeru MORITA, Kuninori SATO, Malay Bikas CHOWDHURI, Suguru MASUZAKI, Mamoru SHOJI, Yukio NAKAMURA, Masayuki TOKITANI, Nobuyoshi OHYABU, Motoshi GOTO, Tomohiro MORISAKI, Ichihiro YAMADA, Kazumichi NARIHARA, Naoko ASHIKAWA, Hiroshi YAMADA, Akio KOMORI, Osamu MOTOJIMA and the LHD experimental group, Plasma Fusion Res. 3, S1005 (2008).