[Table of Contents]

Plasma and Fusion Research

Volume 3, 038 (2008)

Regular Articles


A Computational Study of the Decomposition of Carbon Tetrafluoride in Wet Argon under Electron Beam Irradiation
Susumu KATO, Isao OKUDA, Eiichi TAKAHASHI and Yuji MATSUMOTO
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
(Received 14 March 2008 / Accepted 4 June 2008 / Published 10 July 2008)

Abstract

In this study, a computational method of the kinetic model of carbon tetrafluoride (CF4) in wet argon gas under electron beam irradiation was developed. Using this method, the mechanism of decomposition and the optimum concentration of H2O during decomposition of CF4 was determined. It was found that 99% of 1000 ppm of CF4 of in atmospheric-pressure argon gas decomposed at an input energy density of 1 J/cm3 .


Keywords

decomposition of per-fluorocompounds, electron beam irradiation, nonthermal plasma, kinetic model

DOI: 10.1585/pfr.3.038


References

  • [1] M.B. Chang and J.-S. Chang, Ind. Eng. Chem. Res. 45, 4101 (2006).
  • [2] B.M. Penetrante, M.C. Hsiao, J.N. Bardsley, B.T. Merritt, G.E. Vogtlin, P.H. Wallman, A. Kuthi, C.P. Burkhart and J.B. Bayless, Phys. Lett. A 209, 69 (1995).
  • [3] R. Hermann, Radiat. Phys. Chem. 34, 369 (1989).
  • [4] R. Hermann, Radiat. Phys. Chem. 36, 227 (1990).
  • [5] R.A. Bonham, Jpn. J. Appl. Phys. 33, 4157 (1994).
  • [6] D.C. Lorents, Physica C 82, 19 (1976).
  • [7] E.R. Fisher, M.E. Weber and P.B. Armentrout, J. Chem. Phys. 92, 2296 (1990).
  • [8] X.P. Xu, S. Rauf and M.J. Kushner, J. Vac. Sci. Technol. A: Vac. Surf. Films 18, 213 (2000).
  • [9] E.R. Fisher and P.B. Armentrout, J. Phys. Chem. 95, 6118 (1991).
  • [10] M. Chau and M.T. Bowers, Int. J. Mass. Spectrom. Ion Phys. 24, 191 (1977).
  • [11] R.A. Morris, A.A. Viggiano, S.T. Arnold and J.F. Pauison, Int. J. Mass Spectrom. Ion Process 149/150, 287 (1995).
  • [12] R.A. Morris, A.A. Viggiano, J.M. Van Doren and J.F. Paulson, J. Phys. Chem. 96, 3051 (1992).
  • [13] J.E. Velazco, J.H. Kolts and D.W. Setser, J. Chem. Phys. 69, 4357 (1978).
  • [14] L.G. Piper, J.E. Velazco and D.W. Setser, J. Chem. Phys. 59, 3323 (1973).
  • [15] V.I. Sorokin, N.P. Gritsan and A.I. Chichinin, J. Chem. Phys. 108, 8995 (1998).
  • [16] Jen-Shih Chang, Y. Ichikawa, R.M. Hobson, S. Matsumura and S. Teii, J. Appl. Phys. 72, 2632 (1992).
  • [17] Yueh-Jaw Shiu and M.A. Biondi, Phys. Rev. A17, 868 (1978).
  • [18] T. Oka, M. Kogoma, M. Imamura, S. Arai and T. Watanabe, J. Chem. Phys. 70, 3384 (1979).
  • [19] J.W. Keto, R.E. Gleason and G.K. Walters, Phys. Rev. Lett. 33, 1365 (1974).
  • [20] I. Okuda, Rev. Laser Eng. 32, 271 (2004) [in Japanese].
  • [21] R.J. Shul, B.L. Upschulte, R. Passarella, R.G. Keesee and A.W. Castleman, J. Phys. Chem. 91, 2556 (1987).
  • [22] A.V. Vasenkov, Xi Li, G.S. Oehrlein and M.J. Kushner, J. Vac. Sci. Technol. A: Vac. Surf. Films 22, 511 (2004).
  • [23] P. Gaucherel and B. Rowe, Int. J. Mass. Spectrom. Ion Phys. 25, 227 (1977).
  • [24] R.J. Shul, R. Passarella, B.L. Upschulte, R.G. Keesee and A.W. Castleman Jr., J. Chem. Phys. 86, 4446 (1987).
  • [25] V.G. Anicich and W.T. Huntress Jr, Astrophys. J. Suppl. Ser. 62, 553 (1986).
  • [26] G.B.I. Scott, D.A. Fairley, D.B. Milligan, C.G. Freeman and J. Murray, J. Phys. Chem. A 103, 7470 (1999).
  • [27] W. Lindinger, Phys. Rev. A7, 328 (1973).
  • [28] G.I. Font, W.L. Morgan and G. Mennenga, J. Appl. Phys. 9, 3530 (2002).
  • [29] D.L. McCorkle, L.G. Christophorou, A.A. Christodoulides and L. Pichiarella, J. Chem. Phys. 85, 1966 (1986).
  • [30] A.I. Florescu-Mitchell and J.B.A. Mitchell, Phys. Rep. 430, 277 (2006).
  • [33] S. Rosén, A. Derkatch, J. Semaniak, A. Neau, A. Al-Khalili, A. LePadellec, L. Vikor, R. Thomas, H. Danared, M. afUgglas and M. Larsson, Faraday Discuss. 115, 295 (2000).
  • [34] P.M. Mul, J.W. McGowan, P. Defrance and J.B.A. Mitchell, J. Phys. B: Atomic Mol. Opt. Phys. 16, 3099 (1983).
  • [35] A.A. Viggiano, A. Ehlerding, F. Hellberg, R.D. Thomas, V. Zhaunerchyk, W.D. Geppert, H. Montaigne, M .Larsson, M. Kaminska and F. Osterdahl, J. Chem. Phys. 122, 226101 (2005).
  • [36] S. Laubé, L. Lehfaoui, B.R. Rowe and J.B.A. Mitchell, J. Phys. B: Atomic Mol. Opt. Phys. 31, 4181 (1998).
  • [37] F.J. Mehr and A. Manfred, Phys. Rev. 181, 264 (1969).
  • [38] F.C. Fehsenfeld, C.J. Howard and E.E. Ferguson, J. Chem. Phys. 58, 5841 (1973).
  • [39] T.J. Sommerer and M.J. Kushner, J. Appl. Phys. 71, 1654 (1992).
  • [40] J.H. Kolts and D.W. Setser, J. Phys. Chem. 82, 1766 (1978).
  • [41] M. Bourene and J. Le Calv`e, J. Chem. Phys. 58, 1452 (1973).
  • [42] J. Balamuta and M.F. Golde, J. Chem. Phys. 76, 2430 (1982).
  • [43] J. Balamuta, M.F. Golde and Yueh-Se Ho, J. Chem. Phys. 79, 2822 (1983).
  • [44] F. Kannari, M. Obara and T. Fujioka, J. Appl. Phys. 57, 4309 (1985).
  • [45] T.H. Johnson and A.M. Hunter II, J. Appl. Phys. 51, 2406 (1980).
  • [46] J.B. Leblond, F. Collier, F. Hobeck and P. Cottin, J. Chem. Phys. 74, 6242 (1981).
  • [47] S.K. Lam, C.E. Zheng, D. Lo, A. Dem'yanov and A.P. Napartovich, J. Phys. D: Appl. Phys. 33, 242 (2000).
  • [48] M. Rokni, J.H. Jacob, J.A. Mangano and R. Brochu, Appl. Phys. Let. 31, 79 (1977).
  • [49] M. Rokni, J.H. Jacob and J.A. Mangano, Phys. Rev. A16, 2216 (1977).
  • [50] N. Boewering, R. Sauerbrey and H. Langho, J. Chem. Phys. 76, 3524 (1982).
  • [51] J.W. Wilson and A. Shapiro, J. Appl. Phys. 51, 2387 (1980).
  • [52] D.W. Trainor and J.H. Jacob, Appl. Phys. Let. 37, 675 (1980).
  • [53] C.P. Tsai, S.M. Belanger, J.T. Kim, J.R. Lord and D.L. McFadden, J. Phys. Chem. 93, 1916 (1989).
  • [54] K.R. Ryan and I.C. Plumb, Plasma Chem. Plasma Process. 4, 271 (1984).
  • [55] I.C. Plumb and K.R. Ryan, Plasma Chem. Plasma Process. 6, 205 (1986).
  • [56] J.V. Hoeymissen, I.D. Boelpaep, W. Uten and J. Peeters, J. Phys. Chem. 98, 3725 (1994).
  • [57] C.P. Tsai and D.L. McFadden, J. Phys. Chem. 93, 2471 (1986).
  • [58] I.C. Plumb and K.R. Ryan, Plasma Chem. Plasma Process. 6, 11 (1986).
  • [59] J. Peeters, J. Van Hoeymissen, S. Vanhaelemeersch and D. Vermeylen, J. Phys. Chem. 96, 1257 (1992).
  • [60] N. Cohen and K.R. Westberg, J. Phys. Chem. Ref. Data 12, 531 (1983).
  • [61] R. Atkinson, D.L. Baulch, R.A. Cox, J.N. Crowley, R.F. Hampson, R.G. Hynes, M.E. Jenkin, M.J. Rossi and J. Troe, ACP 7, 981 (2007).
  • [62] R. Atkinson, D.L. Baulch, R.A. Cox, R.F. Hampson Jr., J.A. Kerr, M.J. Rossi and J. Troe, J. Phys. Chem. Ref. Data 26, 521 (1997).
  • [63] JPL, S.P. Sander, R.R. Friedl, D.M. Golden, M.J. Kurylo, G.K. Moortgat, H. Keller-Rudek, P.H. Wine, A.R. Ravishankara, C.E. Kolb, M.J. Molina, B.J. FinlaysonPitts, R.E. Huie and V.L. Orkin, JPL Publication 06, 1 (2006).
  • [64] Yu.R. Bedzhanyan, E.M. Markin and Yu.M. Gershenzon, Kinet. Catal. 33, 802 (1993).
  • [65] A.J. Colussi and M.A. Grela, Chem. Phys. Lett. 229, 134 (1994).
  • [66] R. Atkinson, D.L. Baulch, R.A. Cox, J.N. Crowley, R.F. Hampson, R.G. Hynes, M.E. Jenkin, M.J. Rossi and J. Troe, ACP 4, 1461 (2004).
  • [67] G. Dorthe, P. Caubet, T. Vias, B. Barrere and J. Marchais, J. Phys. Chem. 95, 5109 (1991).
  • [68] D.L. Baulch, C.J. Cobos, R.A. Cox, C. Esser, P. Frank, Th. Just, J.A. Kerr, M.J. Pilling, J. Troe, R.W. Walker and J. Warnatz, J. Phys. Chem. Ref. Data 21, 411 (1992).
  • [69] M.R. Flannery and T.P. Yang, Appl. Phys. Let. 32, 327 (1978).
  • [70] M.R. Flannery and T.P. Yang, Appl. Phys. Let. 32, 356 (1978).
  • [71] C.J. Ultee, Chem. Phys. Let. 46, 366 (1977).
  • [72] D.L. Baulch, C.T. Bowman, C.J. Cobos, R.A. Cox, Th. Just, J.A. Kerr, M.J. Pilling, D. Stocker, J. Troe, W. Tsang, R.W. Walker and J. Warnatz, J. Phys. Chem. Ref. Data 34, 757 (2005).
  • [73] W. Tsang and R.F. Hampson, J. Phys. Chem. Ref. Data 15, 1087 (1986).
  • [74] E.C.Y. Inn, J. Chem. Phys. 59, 5431 (1973).
  • [75] W.F. Liu and D.C. Conway, J. Chem. Phys. 60, 784 (1974).
  • [76] K. Hiraoka and T. Mori, J. Chem. Phys. 90, 7143 (1989).

This paper may be cited as follows:

Susumu KATO, Isao OKUDA, Eiichi TAKAHASHI and Yuji MATSUMOTO, Plasma Fusion Res. 3, 038 (2008).