[Table of Contents]

Plasma and Fusion Research

Volume 3, 032 (2008)

Regular Articles


Assessment of Laser Transmission Mirror Materials for ITER Edge Thomson Scattering Diagnostics
Shin KAJITA, Takaki HATAE and Vladimir S. VOITSENYA1)
Fusion Research and Development Directorate, Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193,Japan
1)
Institute of Plasma Physics, National Science Centre, Kharkov Institute of Science and Technology, Kharkov 61108, Ukraine
(Received 13 March 2008 / Accepted 15 May 2008 / Published 17 June 2008)

Abstract

An assessment of in-vessel metallic mirror materials for the transmission of the laser beam used in the ITER edge Thomson scattering diagnostics is reported. The transient temperature increase due to the laser pulse irradiation on the laser transmission mirror is calculated by a one-dimensional heat conduction equation. Candidate mirror materials are discussed based on a comparison between the numerical calculation and current data relevant to the laser-induced damage threshold (LIDT). Gold, silver, and copper are considered promising because of its high reflectivity. The LIDT is evaluated considering multi-pulse effects and used to determine the necessary size for the laser transmission mirror for the ITER edge Thomson scattering diagnostics.


Keywords

laser Thomson scattering, mirror material, laser induced damage threshold, numerical assessment

DOI: 10.1585/pfr.3.032


References

  • [1] V.S. Voitsenya, V.G. Konovalov, M.F. Becker, O. Motojima, K. Narihara and B. Schunke, Rev. Sci. Instrum. 70, 2016 (1999).
  • [2] V. Voitsenya, A. Bardamid, V. Bondarenko, W. Jacob, V. Konovalov, S. Masuzaki, O. Motojima, D. Orlinskij, V. Poperenko, I. Ryzhkov, A. Sagara, A. Shtan, S. Solodovchenko and M. Vinnichenko, J. Nucl. Mater. 290-293, 336 (2001).
  • [3] D.V. Orlinski, V.S. Voitsenya and K.Y. Vukolov, Plasma Devices and Operations 15, 33 (2007).
  • [4] R.M. Wood, Laser Damage in Optical Materials (IOP Publishing, 1986).
  • [5] Design Description Document (DDD) ITER diagnostic system, (WBS5.5), July, 2000 (2000).
  • [6] T. Hatae, H. Kubomura, S. Matsuoka and Y. Kusama, JAEA-Technology 2006-021, (2006).
  • [7] T. Hatae, O. Naito, M. Nakatsuka and H. Yoshida, Rev. Sci. Instrum. 77, 10E508 (2006).
  • [8] S. Kajita, D. Nishijima, N. Ohno and S. Takamura, J. Appl. Phys. 100, 103304 (2006).
  • [9] Japan Society of Thermophysical Properties, Thermophysical Property Handbook (Yokendo, Tokyo, 2000).
  • [10] Thermophysical properties of high temperature solid materials (Macmillan, New York, 1967).
  • [11] P. Paradis, T. Ishikawa and S. Yoda, Int. J. Thermophysics 24, 1121 (2003).
  • [12] T. Aisaka and M. Shimizu, Nucl. Instrum. Methods 28, 646 (1970).
  • [13] S.C. Jain, B.B. Sharma and B.K. Reddy, J. Phys. D: Appl. Phys. 5, 155 (1972).
  • [14] A.G. Sorokin, L.N. Trukhanova and L.P. Filippov, High Temperature 7, 342 (1969).
  • [15] E.D. Palik (Editor), Handbook of Optical Constants of Solids (Academic Press, Orlando, 1985).
  • [16] K. Ujihara, J. Appl. Phys. 43, 2376 (1972).
  • [17] J. Lin and T.F. George, J. Appl. Phys. 54, 382 (1983).
  • [18] N. Koumvakalis, C. Lee and M. Bass, IEEE J. Quantum. Electron. QE-19, 1482 (1983).
  • [19] T. Saito, D. Milam, P. Baker and G. Murphy, National Bureau of Standards Special Publication N435, 29 (1975).
  • [20] C.S. Lee, N. Koumvakalis and M. Bass, J. Appl. Phys. 54, 5727 (1983).
  • [21] D.V. Orlinski, V.S. Voitsenya and K.Y. Vukolov, Plasma Devices and Operations 15, 127 (2007).
  • [22] T. Hatae, M. Nakatsuka and H. Yoshida, J. Plasma Fusion Res. 80, 870 (2004).
  • [23] H. Yoshida, M. Nakatsuka, T. Hatae, S. Kitamura and T. Kashiwabara, Jpn. J. Appl. Phys. 42, 439 (2003).
  • [24] M. Ye, S. Fukuta, N. Ohno, S. Takamura, K. Tokunaga and N. Yoshida, J. Plasma Fusion Res. SERIES 3, 265 (2000).
  • [25] T. Sugie, S. Kasai, M. Taniguchi, M. Nagatsu and T. Nishitani, J. Nucl. Mater. 329-333, 1481 (2004).
  • [26] J.F. Figueira and S.J. Thomas, IEEE J. Quantum. Electron. QE-18, 1381 (1982).
  • [27] W. Koechner, Solid-state laser engineering, 5th ed. (Springer, 1999).
  • [28] A. Gorshkov, I. Bel'bas, M. Maslov, V. Sannikov and K. Vukolov, Fusion Eng. Des. 74, 859 (2005).
  • [29] J. Nakai, T. Yuki, H. Fujii, T. Satou, T. Onishi and K. Takagi, Kobe Steel Engineering Report 52, 12 (2002).
  • [30] T. Higuchi and H. Koyanagi, Jpn. J. Appl. Phys. 39, 933 (2000).
  • [31] E.A. Brandes and G.B. Brook, Smithells Metals Reference Book, 7th ed. (Butterworth-Heinemann, 1998).
  • [32] T. Nishitani, T. Shikama, R. Reichle, E.R. Hodgson, E. Ishitsuka, S. Kasai and S. Yamamoto, Fusion Eng. Des. 6464, 437 (2002).
  • [33] A. Kumar, Y. Ikeda and M. Abdou, J. Nucl. Mater. 240, 144 (1997).
  • [34] I. Orlovskiy and K. Vukolov, Fusion Eng. Des. 74, 865 (2005).

This paper may be cited as follows:

Shin KAJITA, Takaki HATAE and Vladimir S. VOITSENYA, Plasma Fusion Res. 3, 032 (2008).