[Table of Contents]

Plasma and Fusion Research

Volume 3, 023 (2008)

Regular Articles


Temporal and Spatial Variations in Electron Density and Blackbody Temperature in the Initial Phase of a Laser Ablation BN Plasma
Koichi SASAKI, Shin YASUDA1) and Noriharu TAKADA1)
Plasma Nanotechnology Research Center, Nagoya University,Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
1)
Department of Electrical Engineering and Computer Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
(Received 25 February 2008 / Accepted 27 March 2008 / Published 19 May 2008)

Abstract

Optical emission spectroscopy was used for examining the temporal variations in the spatial distributions of the blackbody temperature and electron density of plasmas produced by laser ablation of a BN target in ambient nitrogen gas. The blackbody temperature was estimated by fitting the continuum component in the optical emission spectrum using the Planck's law of radiation, and the electron density was evaluated from the Stark broadening of a line emission of a B atom. The blackbody temperature was evaluated to be close to 104 K and the electron density was on the order of 1017- 1018 cm-3, immediately after the irradiation of the laser pulse on the target. The dynamics of the blackbody temperature and the electron density were understood by considering plasma expansion and the confinement effect of ambient gas.


Keywords

electron density, blackbody temperature, spatiotemporal variation, optical emission spectroscopy, laser ablation plasma

DOI: 10.1585/pfr.3.023


References

  • [1] F.J. Gordillo-Vázquez, A. Perea, A.P. McKiernan and C.N. Afonso, Appl. Phys. Lett. 86, 181501 (2005).
  • [2] S.S. Harilal, B. O'Shay and M.S. Tillack, J. Appl. Phys. 98, 013306 (2005).
  • [3] N.M. Shaikh, B. Rashid, S. Hafeez, Y. Jamil and M.A. Baig, J. Phys. D: Appl. Phys. 39, 1384 (2006).
  • [4] S. Namba, R. Nozu, K. Takiyama and T. Oda, J. Appl. Phys. 99, 073302 (2006).
  • [5] S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello and X. Wang, Appl. Phys. Lett. 84, 4502 (2004).
  • [6] S. Komatsu, K. Kurashima, H. Kanda, K. Okada, M. Mitomo, Y. Moriyoshi, Y. Shimizu, M. Shiratani, T. Nakano and S. Samukara, Appl. Phys. Lett. 81, 4547 (2002).
  • [7] S. Komatsu, A. Okudo, D. Kazami, D. Golberg, Y.B. Li, Y. Moriyoshi, M. Shiratani and K. Okada, J. Phys. Chem. B 108, 5182 (2004).
  • [8] H.R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964).
  • [9] H.R. Griem, Principles of plasma spectroscopy (Cambridge University Press, Cambridge, 1997).
  • [10] H.R. Griem, Spectral line broadening by plasmas (Academic Press, New York, 1974).
  • [11] B.Y. Man, Q.L. Dong, A.H. Wei, Q.G. Zhang, J.L. He and X.T. Wang, J. Opt. A: Pure Appl. Opt. 6, 17 (2004).

This paper may be cited as follows:

Koichi SASAKI, Shin YASUDA and Noriharu TAKADA, Plasma Fusion Res. 3, 023 (2008).