[Table of Contents]

Plasma and Fusion Research

Volume 3, 006 (2008)

Regular Articles


Systematic Analysis of Current Decay Time during Disruption in HYBTOK-II Tokamak
Masaaki OKAMOTO, Noriyasu OHNO1) and Shuichi TAKAMURA2)
Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
1)
EcoTopia Science Institute, Nagoya University, Nagoya 464-8603, Japan
2)
Faculty of Engineering, Aichi Institute of Technology, Toyota 470-0392, Japan
(Received 24 October 2007 / Accepted 24 November 2007 / Published 29 January 2008)

Abstract

In order to estimate the electromagnetic force acting on vessel components during tokamak disruptions, an accurate prediction of the plasma current decay time is necessary. We have verified a current decay model based on a simple series circuit with a plasma resistance and an inductance. The circuit is employed for establishment of a plasma current decay time database using disruptive discharges in a small tokamak HYBTOK-II. An increase in the decay rate of the plasma current during the current quench phase was observed in experiments associated with an increase in the plasma resistance. This experimental result is consistent with the prediction of the model.


Keywords

disruption, current quench, current decay rate, small tokamak

DOI: 10.1585/pfr.3.006


References

  • [1] R.O. Sayer, Y.K.M. Peng, S.C. Jardin, A.G. Kellman and J.C. Wesley, Nucl. Fusion 33, 969 (1993).
  • [2] K. Masaki, T. Ando, K. Kodama, T. Arai et al., J. Nucl. Mater. 220-222, 390 (1995).
  • [3] Progress in the ITER Physical Basis, Nucl. Fusion 47, S171 (2007).
  • [4] H. Ohwaki, M. Sugihara and A. Hatayama, Plasma Fusion Res. 1, 016 (2006).
  • [5] M. Bakhtiari and D.G. Whyte, Phys. Plasmas 13, 112511 (2006).
  • [6] D.C. Robinson and K.M. McGuire, Nucl. Fusion 19, 115 (1979).
  • [7] K.M. McGuire and D.C. Robinson, Phys. Rev. Lett. 44, 1666 (1980).
  • [8] I.H. Hutchinson, Phys. Rev. Lett. 37, 338 (1976).
  • [9] A.H. Morton, Nucl. Fusion 16, 571 (1976).
  • [10] A. Vannucci, I.C. Nascimento and I.L. Caldas, Plasma Phys. Control. Fusion 31, 147 (1989).
  • [11] L. Giannone, R.C. Cross and I.H. Hutchinson, Nucl. Fusion 27, 2085 (1987).
  • [12] S. Takamura, Y. Kikuchi, Y. Uesugi and M. Kobayashi, Nucl. Fusion 43, 393 (2003).
  • [13] L. Spitzer and R. Härm, Phys. Rev. 89, 977 (1953).
  • [14] M. Okamoto, T. Yamada, T. Hiraishi, Y. Kikuchi, N. Ohno and S. Takamura, J. Nucl. Mater. 363-365, 1076 (2007).
  • [15] M. Okamoto, S. Takamura, N. Ohno, S. Kajita, Y. Kikuchi, Y. Uesugi, T. Ozeki, Y. Kawano and M. Sugihara, Nucl. Fusion 47, 1106 (2007).
  • [16] J.A. Wesson, Tokamaks 3rd edition (New York: Oxford University Press, 2004) chapter 3.
  • [17] M. Arnaud and R. Rohtenflug, Astron. Astrophys. Suppl. Ser. 60, 425 (1985).
  • [18] N. Wild, W. Gekelman and R.L. Stenzel, Phys. Rev. Lett. 46, 339 (1981).

This paper may be cited as follows:

Masaaki OKAMOTO, Noriyasu OHNO and Shuichi TAKAMURA, Plasma Fusion Res. 3, 006 (2008).