[Table of Contents]

Plasma and Fusion Research

Volume 2, S1125 (2007)

Regular Articles


Application of the Liquid-Crystal-Based Tunable Lyot Filter to the Optical Emission Imaging Plasma Spectrometry
Shinichiro KADO, Hiroshi SUZUKI1), Yousuke KUWAHARA1), Kiminori KURIHARA1), Taiichi SHIKAMA1), Filippo SCOTTI1), Yohei IIDA1) and Satoru TANAKA1)
High Temperature Plasma Center, The University of Tokyo, Kashiwa, 277-8568, Japan
1)
School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
(Received 9 December 2006 / Accepted 8 May 2007 / Published 20 November 2007)

Abstract

An imaging spectrometry of plasmas using a tunable Lyot filter for the visible range (400-720 nm) is proposed. The typical passband and transmittance of the filter in the present study are 7 nm FWHM and 12 % at 550 nm. An optical system has been developed for a MAP-II divertor/edge plasma simulator. The line contamination was defined as the contributions of the adjacent lines in the passband of the filter and of the lines in the leak-band which were observed at longer than 548 nm at a specific wavelength setting below 455 nm. We found that it is desirable to use a low-pass or band-pass filter to cut leak-bands, and that the He I lines of 447, 471, 492, 501 and 587 nm can be used for pure He plasma. Based on the CR model, the parameter range where these line ratios were applicable in our discharge condition of 12 mTorr was evaluated for the electron temperature of Te < 20 eV and the electron density of 1011 < ne < 1014 cm-3.


Keywords

Lyot filter, tunable wavelength filter, imaging spectrometry, fusion plasma, collisional radiative model, liquid-crystal filter, divertor simulator, MAP-II

DOI: 10.1585/pfr.2.S1125


References

  • [1] T. Fujimoto, J. Quant. Spectrosc. Radiat. Transfer 21, 439 (1979).
  • [2] B. Lyot, “Optical Apparatus With Wide-Field Using Interference of Polarized Light,” C.R. Acad. Sci. (Paris), 197, 1593 (1933).
  • [3] G.A. Kopp, M.J. Derks, D.F. Elmore et al., Appl. Opt. 36, 291-296 (1997).
  • [4] J. Staromlynska, S.M. Rees, and M.P. Gillyon, Appl. Opt. 37, 1081-1088 (1998).
  • [5] J. Bland-Hawthorn, W. Breugel, P.R. Gillingham et al., Astrophysical Journal 563, 611(2001).
  • [6] M. Goto, J. Quant. Spectrosc. Radiat. Transfer 76, 331 (2003).
  • [7] B. Schweer, G. Mank, A. Pospieszczyk et al., J. Nucl. Mater. 196-198, 174 (1992).
  • [8] S. Sasaki, S. Takamura, S. Watanabe et al., Rev. Sci. Instrum. 67, 3521 (1996).
  • [9] S. Kajita, N. Ohno S. Takamura and T. Nakano, Phys. Plasmas 13, 013301 (2006).
  • [10] M. Otsuka, R. Ikee and K. Ishii, J. Quant. Spectrosc. Radiat. Transfer, 21, 41 (1979).
  • [11] B. Xiao, S. Kado, S. Kajita and D. Yamasaki, Plasma Phys. Control. Fusion 46, 653 (2004).
  • [12] Y. Iida, S. Kado, A. Okamoto et al., J. Plasma Fusion Res. SERIES, 7, 123 (2006).
  • [13] S. Kado, Y. Iida, S. Kajita et al., J. Plasma Fusion Res. 81, 810 (2005).
  • [14] Y. Kuwahara, S. Kado, A. Okamoto et al., Plasma Fusion Res. 2, S1081 (2007).

This paper may be cited as follows:

Shinichiro KADO, Hiroshi SUZUKI, Yousuke KUWAHARA, Kiminori KURIHARA, Taiichi SHIKAMA, Filippo SCOTTI, Yohei IIDA and Satoru TANAKA, Plasma Fusion Res. 2, S1125 (2007).