[Table of Contents]

Plasma and Fusion Research

Volume 2, S1061 (2007)

Regular Articles


Fast XUV 16 × 16 Array Hybrid Module for Plasma Imaging Applications
Andrey G. ALEKSEYEV, Alexandr M. BELOV, Vladimir V. ZABRODSKY1), Vladislav L. SUKHANOV1), Andrey A. SOROKIN1,2) and Byron J. PETERSON3)
TRINITI Troitsk, Moscow reg. 142190 Russia
1)
Ioffe Physico-Technical Institute, 26 Polytekhnicheskaja, St.Petersburg, 194021 Russia
2)
Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
3)
National Institute for Fusion Science, Toki, 509-5292, Japan
(Received 2 December 2006 / Accepted 1 May 2007 / Published 20 November 2007)

Abstract

A hybrid matrix array detector is developed for ultra-fast plasma imaging applications with the use of XUV Si photodiodes (SPD diodes) manufactured according to Ioffe Institute original technology. A basic 16 × 16 hybrid module is comprised of eight stacked sub-modules with 2 × 16 linear SPD diode arrays combined with a circuit board with a 32-channel preamplifier and four 8-channel fast multiplexers. Array front size is 31 × 31 mm2 with ∼25 % sensitive area. The module has a “zero-edge” design providing an option of stacking into the larger arrays, if necessary. The data acquisition system (DAS) consists of eight 4-channel synchronous 12-bit ADC modules with 40 MS/s upper sampling rate, thus providing less than 1 μs minimum time for the complete read-out of the array. Each channel has a 64 MB on-board memory limiting the duration of the acquired period to 0.8 sec at the maximum sampling rate. A common TCP/IP Ethernet protocol is used for the data transmission into the main PC operating as a DAS control console, data preview and storage computer.


Keywords

XUV detector, matrix array, fast imaging

DOI: 10.1585/pfr.2.S1061


References

  • [1] R. Korde, J.S. Cable, and L.R. Canfield, IEEE Trans.Nucl.Sci. 40, 1655 (1993), International Radiation Detectors, Inc. (Torrance, USA), http://www.ird-inc.com
  • [2] R.J. Maqueda, G.A. Wurden, and E.A. Crawford, Rev. Sci. Instrum. 63, 4717 (1992).
  • [3] Yizhi Wen and R.V. Bravenec, Rev. Sci. Instrum. 66, 549 (1995).
  • [4] G.C. Idzorek and H. Oona, Rev. Sci. Instrum. 68, 1065 (1997).
  • [5] A. Alekseyev, G. Perov, A. Kurnosov et al., Plasma Devices and Operations 7, 139 (1999).
  • [6] R.L. Boivin, J.A. Goetz, E.S. Marmar et al., Rev. Sci. Instrum. 70, 260 (1999).
  • [7] I. Furno, H. Weisen, J. Mlynar et al., Rev. Sci. Instrum. 70, 4552 (1999).
  • [8] V.A. Soukhanovskii, D. Stutman, M. Iovea et al., Rev. Sci. Instrum. 72, 737 (2001).
  • [9] Y. Liu, A.Yu. Kostrioukov and B.J. Peterson, Rev. Sci. Instrum. 74, 2312 (2003).
  • [10] M. Krumrey, M. Gerlach, F. Scholze and G. Ulm, Nucl. Instr. & Meth. Phys. Res. A568, 364 (2006).
  • [11] F. Scholze, R. Klein, R. Müller, Metrologia 43, S6-S10 (2006).
  • [12] H.O. Funsten, S.M. Ritzau, R.W. Harper et al., IEEE Trans. Nucl. Sci., 48, 1785 2(2001).
  • [13] R.E. Vest and L.R. Canfield, AIP Conference Proceedings 417, 234 (1997).
  • [14] T. Saito, Metrologia 40, S159, (2003).
  • [15] S.V. Mirnov, A.G. Alekseyev, A.M. Belov et al., 18th IAEA Fusion Energy Conference Sorrento, Italy, 4 to 10 October 2000.
  • [16] S. Ohdachi, K. Toi, G. Fuchs et al., Rev. Sci. Instrum. 74, 2136 (2003).
  • [17] D. Stutman, M. Finkenthal, G. Suliman et al., Rev. Sci. Instrum. 76, 023505 (2005).
  • [18] Yu.A. Goldberg, V.V. Zabrodsky, O.I. Obolenski et al., Semiconductors 33, 343 (1999).

This paper may be cited as follows:

Andrey G. ALEKSEYEV, Alexandr M. BELOV, Vladimir V. ZABRODSKY, Vladislav L. SUKHANOV, Andrey A. SOROKIN and Byron J. PETERSON, Plasma Fusion Res. 2, S1061 (2007).