[Table of Contents]

Plasma and Fusion Research

Volume 2, S1023 (2007)

Regular Articles


Fast Ion Dynamics in Magnetically Confined Plasma Measured by Collective Thomson Scattering
Henrik BINDSLEV1), Stefan K. NIELSEN1), Søren B. KORSHOLM1,2), Fernando MEO1), Poul K. MICHELSEN1), Susanne MICHELSEN1), Erekle L. TSAKADZE1), Paul WOSKOV2), Egbert WESTERHOF3), J. A. HOEKZEMA4), J. W. OOSTERBEEK4), Laurie PORTE5) and the TEXTOR team
1)
EURATOM-Risø National Laboratory, DK-4000 Roskilde, Denmark
2)
MIT Plasma Science and Fusion Center, Cambridge, MA 02139,USA
3)
FOM-Institute for Plasma Physics Rijnhuizen, EURATOM-FOM, The Netherlands
4)
EURATOM-Forschungszentrum Jülich GmbH, Institut für Plasmaphysik, D-52425 Jülich, Germany
5)
CRPP, EURATOM-Confédération Suisse, EPFL, CH-1015 Lausanne, Switzerland
(Received 3 December 2006 / Accepted 5 June 2007 / Published 20 November 2007)

Abstract

Magnetically confined fusion plasmas are mostly heated by small populations of energetic ions. In current devices these fast ions are mainly generated by auxiliary heating, while in ITER fusion generated alpha particles will dominate. A multitude of MHD phenomena, some of them driven by the fast ions, can redistribute or eject the energetic ions prematurely, affecting fusion performance and potentially damaging walls. Theory and modeling of fast ion dynamics in fluctuating or turbulent plasmas is challenging and needs guidance from - and bench marking against - measurements of the fast ion dynamics. Collective Thomson Scattering (CTS) can provide such measurements of the confined fast ions. Here we present CTS measurements of the TEXTOR tokamak plasma which show fast ions responding to sawteeth and display slowdown evolution of the fast ion velocity distribution after switch off of neutral beam heating. The toroidal rotation velocity of the bulk ions is inferred from the measurements. Plans for an ITER fast ion CTS are also briefly discussed.


Keywords

plasma and fusion research, fast and energetic ion diagnostic, collective Thomson scattering, slowdown, rotation velocity

DOI: 10.1585/pfr.2.S1023


References

  • [1] W.W. Heidbrink and G. Sadler, Nucl. Fusion 34, 535 (1994).
  • [2] J. Jacquinot et al., Nucl. Fusion 39, 2471 (1999).
  • [3] S.D. Pincheset al., Plasma Phys. Controlled Fusion 46, B187 (2004).
  • [4] M. Rosenbluth and P.H. Rutherford, Phys. Rev. Lett. 34, 1428 (1975).
  • [5] C. Cheng and M. Chance, Phys. Fluids 29, 3695 (1986).
  • [6] V.S. Belikov, Y.I. Kolesnichenko and V.V. Lutsenko, Nucl. Fusion 35, 207 (1995).
  • [7] W. Kerner et al., Nucl. Fusion 38, 1315 (1998).
  • [8] K. Wong, Plasma Phys. Controlled Fusion 41, R1 (1999).
  • [9] M. Ishikawa et al., Nuclear Fusion 45, 1474 (2005).
  • [10] D.J. Campbell et al., Phys. Rev. Lett. 60, 2148 (1988).
  • [11] J. Graves et al., Plasma Phys. Controlled Fusion 47, B121 (2005).
  • [12] Y. Kolesnichenko et al., Nucl. Fusion 40, 1325 (2000).
  • [13] H. Duong and W. Heidbrink, Nucl. Fusion 33, 211 (1993).
  • [14] F.B. Marcus et al., Nucl. Fusion 34, 687 (1994).
  • [15] Iter final design report, design requirements and guidelines level 1 (drg1), report no. g a0 gdrd 2 01-07-13 r 1.0 (2001).
  • [16] V. Mukhhovatov et al., Diagnostics for Experimental Thermonuclear Fusion Reactors 2 (Plenum, New York 1998), chap.2, p.25.
  • [17] H. Bindslev et al., Phys. Rev. Lett. 83, 3206 (1999).
  • [18] H. Bindslev et al., Phys. Rev. Lett. 97, 205005 (2006).
  • [19] H. Bindslev, F. Meo and S.B. Korsholm, Iter fast ion collective thomson scattering-feasibility study, report, efda contract 01.654 (2003), available at www.risoe.dk/fusion/cts/iter.
  • [20] H. Bindslev et al., Rev. Sci. Instrum. 75, 3598 (2004).
  • [21] J. Egedal et al., Nucl. Fusion 45, 191 (2005).
  • [22] H. Bindslev, J. Plasma and Fusion Research 76, 878 (2000).
  • [23] A. Sitenko and Y. Kirochkin, Sov. Phys. Usp. 9, 430 (1966).
  • [24] R. Aamodt and D. Russel, Nucl. Fusion 32, 745 (1992).
  • [25] H. Bindslev, Plasma Phys. Controlled Fusion 35, 1615 (1993).
  • [26] H. Bindslev, J. Atmos. Terr. Phys. 58, 983 (1996).
  • [27] H. Bindslev Strong microwaves in plasmas (Russian Academy of Sciences, Institute of Applied Physics, Nizhny Novgorod 1996), vol.1, p.109.
  • [28] R. Behn et al., Phys. Rev. Lett. 62, 2833 (1989).
  • [29] P. Woskoboinikow, D.R. Cohn and R.J. Temkin, Int. J. Infrared and Millimeter Waves 4, 205 (1983).
  • [30] E. Suvorov et al., Plasma Phys. Controlled Fusion 37, 1207 (1995).
  • [31] J. Hoekzema et al., Rev. Sci. Instrum. 68, 275 (1997).
  • [32] J. Machuzak et al., Rev. Sci. Instrum. 68, 458 (1997).
  • [33] T. Kondoh et al., Rev. Sci. Instrum. 72, 1143 (2001).
  • [34] U. Tartari et al., Nucl. Fusion 46, 928 (2006).
  • [35] H. Bindslev et al., in Proc. 26th EPS Conf. on Contr. Fusion and Plasma Physics, Maastricht, 14-18 June 1999, ed. R. Pick, Paris, vol.23J, p.765.
  • [36] H. Bindslev et al., Fusion Engineering and Design 53, 105 (2001).
  • [37] L. Porte et al., Rev. Sci. Instrum. 72, 1148 (2001).
  • [38] S. Michelsen et al., Rev. Sci. Instrum. 75, 3634 (2004).
  • [39] S. Korsholm et al., Rev. Sci. Instrum. 77, 10E514 (2006).
  • [40] H. Bindslev, Rev. Sci. Instrum. 70, 1093 (1999).
  • [41] T. Hellsten et al., Nucl. Fusion 44, 892 (2004).
  • [42] V. Kiptily et al., Nucl. Fusion 42, 999 (2002).
  • [43] H. Bindslev, Proc. 8th Int. Symp. Laser Aided Plasma Diagnostics, Doorwert, NL, 22-26 Sept. 1997, ed. Tony Donne, FOM, NL, p.265. Also available at www.risoe.dk/fusion/CTS/publications/pdf/LAPD8.pdf
  • [44] F. Meo et al., Rev. Sci. Instrum. 75, 3585 (2004).

This paper may be cited as follows:

Henrik BINDSLEV, Stefan K. NIELSEN, Søren B. KORSHOLM, Fernando MEO, Poul K. MICHELSEN, Susanne MICHELSEN, Erekle L. TSAKADZE, Paul WOSKOV, Egbert WESTERHOF, J. A. HOEKZEMA, J. W. OOSTERBEEK, Laurie PORTE and the TEXTOR team, Plasma Fusion Res. 2, S1023 (2007).