[Table of Contents]

Plasma and Fusion Research

Volume 2, S1013 (2007)

Regular Articles


Multi-Functional Diagnostic Method with Tracer-Encapsulated Pellet Injection
Shigeru SUDO1,3), Naoki TAMURA1), Diana KALININA1), Igor VINYAR2), Kuninori SATO1,3), Evgeny VESHCHEV3), Pavel GONCHAROV1), Tetsuo OZAKI1,3), Shigeru INAGAKI1), Hisamichi FUNABA1), Sadatsugu MUTOH1,3), Yuri IGITKHANOV4), Liu YI5), Byron PETERSON1), Dan STUTMAN6), Michael FINKENTHAL6) and LHD Experimental Group1)
1)
National Institute for Fusion Science, Toki 509-5292, Japan
2)
PELIN Laboratory, Ltd., 2, Admiral Makarov Str., Moscow, 125212, Russia
3)
Graduate University for Advaneced Studies, Hayama 240-0193, Japan
4)
Max-Planck-Institut für Plasmaphysik, EURATOM-Association, D-85748 Garching, Germany
5)
Southwestern Institute of Physics, P.O.Box 432, Chengdu, Sichuan 610041, China
6)
Johns Hopkins University, Baltimore, MD 21218, USA
(Received 13 December 2006 / Accepted 1 May 2007 / Published 20 November 2007)

Abstract

In order to obtain a better understanding of impurity transport in magnetically confined plasmas, a Tracer-Encapsulated Soild PELlet (TESPEL) has been developed. The essential points of the TESPEL are as follows: the TESPEL has a double-layered structure, and a tracer impurity, the amount of which can be known precisely, is embedded as an inner core. This structure enables us to deposit the tracer impurity locally inside the plasma. From experiences of developing the TESPEL production technique and its injection experiments, it became clear that various plasma properties can be studied by the TESPEL injection. There are not only impurity transport in the plasma but also transport both outside and inside of the magnetic island O-point, heat transport and high-energy neutral particle flux. Therefore, the TESPEL injection has a favorable multi-functional diagnostic capability. Furthermore a Tracer-Encapsulated Cryogenic PELlet (TECPEL) has been also developed. The TECPEL has an advantage over the TESPEL in terms of no existence of carbons in the outer layer. The TECPEL injector was installed at LHD in December 2005, and the preliminary injection experiments have been carried out.


Keywords

pellet injection, tracer-encapsulated solid pellet, tracer-encapsulated cryogenic pellet, impurity transport, heat transport, magnetic island, pellet charge exchange

DOI: 10.1585/pfr.2.S1013


References

  • [1] K. Khlopenkov et al., Fusion Eng. Design 34-35, 337 (1997).
  • [2] H. Kaneko et al., Nucl. Fusion 27, 1075 (1987).
  • [3] S. Sudo et al., J. Plasma Fusion Res. 69, 1349 (1993).
  • [4] K. Khlopenkov et al., Rev. Sci. Instrum. 69, 3194 (1998).
  • [5] O. Motojima et al., Phys. Plasma 65, 1843 (1999).
  • [6] K. Nagai et al., J. Polymer. Sci., A: Polym. Chem. 38, 3412 (2000).
  • [7] N. Tamura et al., J. Plasma Fusion Res. SERIES, 4, 442 (2001).
  • [8] N. Tamura et al., Plasma Phys. Control. Fusion 45, 27 (2003).
  • [9] R.A. Hulse, Nucl. Technol/Fusion, 3, 259 (1983).
  • [10] K. Behringer, JET Report No. JET-R87, 08 (1987).
  • [11] S. Inagaki et al., Phys. Rev. Lett. 92, 055002-1 (2004).
  • [12] N. Tamura et al., J. Plasma Fusion Res. 78, 837 (2002).
  • [13] S. Inagaki et al., Nucl. Fusion 46, 133 (2006).
  • [14] N. Tamura et al., Phys. Plasmas 12, 110705 (2005).
  • [15] K.W. Gentle et al., Phys. Rev. Lett. 74, 3620 (1995).
  • [16] T. Ozaki et al., Rev. Sci. Instrum. 77, 10E917-1 (2006).
  • [17] P.R. Goncharov et al., Rev. Sci. Instrum. 77, 10F119-1 (2006).
  • [18] S. Sudo et al., Rev. Sci. Instrum. 76, 053507 (2005).

This paper may be cited as follows:

Shigeru SUDO, Naoki TAMURA, Diana KALININA, Igor VINYAR, Kuninori SATO, Evgeny VESHCHEV, Pavel GONCHAROV, Tetsuo OZAKI, Shigeru INAGAKI, Hisamichi FUNABA, Sadatsugu MUTOH, Yuri IGITKHANOV, Liu YI, Byron PETERSON, Dan STUTMAN, Michael FINKENTHAL and LHD Experimental Group, Plasma Fusion Res. 2, S1013 (2007).