[Table of Contents]

Plasma and Fusion Research

Volume 2, 026 (2007)

Regular Articles


Pulse Expansion and Doppler Shift of Ultrahigh Intense Short Pulse Laser by Slightly Overdense Plasma
Hitoshi SAKAGAMI and Kunioki MIMA1)
Department of Simulation Science, National Institute for Fusion Science
1)
Institute of Laser Engineering, Osaka University
(Received 8 April 2007 / Accepted 11 May 2007 / Published 27 June 2007)

Abstract

The interactions between ultrahigh intense laser and overdense plasmas were investigated by the use of a 1-1/2 dimensional electromagnetic relativistic particle-in-cell code, EMPAC. When the effective electron plasma frequency is reduced below the laser frequency by increasing the inertial electron mass due to the relativistic effect, the ultrahigh intense short pulse laser can penetrate the overdense plasma, but is completely reflected after propagating to a certain extent, except for a portion of the absorbed laser. The pulse length of the reflected laser is expanded more than that of the incident laser by a modulation due to the anomalous penetration, and the pulse expansion factor can be predicted by the schematic model. The frequency of the reflected laser can be calculated by the Doppler shift formula coupled with a relativistic dispersion relation, and is good agreement with the simulation result. The anomalously penetrating pulse shows soliton-like behaviors in the plasma after the incident laser has vanished.


Keywords

ultrahigh intense laser, short pulse laser, anomalous penetration, simulation

DOI: 10.1585/pfr.2.026


References

  • [1] P. Main, and G. Mourou, Opt. Lett. 13, 467 (1988).
  • [2] M.D. Perry, F.G. Patterson and J. Weston, Opt. Lett. 15, 381 (1990).
  • [3] F.G. Patterson, R. Gonzales and M.D. Perry, Opt. Lett. 16, 1107 (1991).
  • [4] G.A. Mourou, C.P.J. Barty and M.D. Perry, Phys. Today 511, 22 (1998).
  • [5] A.I. Akhiezer and P.V. Polovin, Sov. Phys. JETP 3, 696 (1956).
  • [6] P. Kaw and J. Dawson, Phys. Fluids 13, 472 (1970).
  • [7] A.D. Steiger and C.H. Woods, Phys. Rev. A 5, 1467 (1972).
  • [8] S.V. Bulanov, N.M. Naumova and F. Pegoraro, Phys. Plasmas 1, 745 (1994).
  • [9] E. Lefebvre and G. Bonnaud, Phys. Rev. Lett. 74, 2002 (1995).
  • [10] H. Sakagami and K. Mima, Phys. Rev. E 54, 1870 (1996).
  • [11] T.Zh. Esirkepov, F.F. Kamenets, S.V. Bulanov and N.M. Naumova, JETP Lett. 68, 36 (1998).
  • [12] S.V. Bulanov, T.Zh. Esirkepov, N.M. Naumova, F. Pegoraro and V.A. Vshivkov, Phys. Rev. Lett. 82, 3440 (1999).
  • [13] S.V. Bulanov, T.Zh. Esirkepov, F. Califano, K. Mima, N.M. Naumova, K. Nishihara, F. Pegoraro, Y. Sentoku and V.A. Vshivkov, J. Plasma Fusion Res. 75, 75 (1999).
  • [14] Y. Sentoku, T.Zh. Esirkepov, K. Mima, K. Nishihara, F. Califano, F. Pegoraro, H. Sakagami, Y. Kitagawa, N.M. Naumova and S.V. Bulanov, Phys. Rev. Lett. 83, 3434 (1999).
  • [15] N.M. Naumova, S.V. Bulanov, T.Zh. Esirkepov, D. Farina, K. Nishihara, F. Pegoraro, H. Ruhl and A.S. Sakharov, Phys. Rev. Lett. 87, 185004 (2001).
  • [16] M. Lontano, S.V. Bulanov, J. Koga, M. Passoni and T. Tajima, Phys. Plasmas 9, 2562 (2002).
  • [17] C.K. Birdsall and A.B. Langdon, Plasma Physics via Computer Simulation (McGraw-Hill, New York, 1982) p.181.
  • [18] S. Guerin, P. Mora, J.C. Adam, A. Heron and G. Laval, Phys. Plasmas 3, 2693 (1996).
  • [19] S.C. Wilks, W.L. Kruer, M. Tabak and A.B. Langdon, Phys. Rev. Lett. 69, 1383 (1992).

This paper may be cited as follows:

Hitoshi SAKAGAMI and Kunioki MIMA, Plasma Fusion Res. 2, 026 (2007).