[Table of Contents]

Plasma and Fusion Research

Volume 2, 025 (2007)

Regular Articles


Nonlinear Drive of Tearing Mode by Microscopic Plasma Turbulence
Masatoshi YAGI , Sanae-I. ITOH, Kimitaka ITOH1), Masafumi AZUMI2), Patrick H. DIAMOND3), Atsushi FUKUYAMA4) and Takayuki HAYASHI
Research Institute for Applied Mechanics, Kyushu University
1)
National Institute for Fusion Science
2)
Center for Promotion of Computational Science and Engineering, Japan Atomic Energy Agency
3)
Physics Department, University of California San Diego
4)
Department of Nuclear Engineering, Kyoto University
(Received 1 March 2007 / Accepted 24 April 2007 / Published 20 June 2007)

Abstract

The dynamics of the tearing mode and microscopic resistive drift wave turbulence are studied by performing a nonlinear simulation based on a 4-field Reduced MHD model, placing an emphasis on the interaction between microscopic and transport processes. The simulation results show the importance of turbulent fluctuations for the onset of the tearing mode. The faster growth of microscopic fluctuations induces accelerated growth of the tearing mode, which is much faster than the linear growth rate. A turbulence-driven magnetic island is formed. This is based on the incoherent emission of the long wavelength mode by microscopic turbulence.


Keywords

tearing mode, resistive drift wave, beat interaction, weak turbulence, neoclassical tearing mode, multi-scale simulation

DOI: 10.1585/pfr.2.025


References

  • [1] J.D. Callen et al., in Fusion Energy 1986 (Proc. 11th Int. Conf. Kyoto, 1986), vol.2 IAEA, Vienna (1987).
  • [2] A.I. Smolyakov, Plasma Phys. Control. Fusion 35, 657 (1993).
  • [3] M. Yagi et al., in Fusion Energy 2002 (Proc. 19th Int. Conf. Lyon, 2002) (Vienna: IAEA) CD-ROM file TH/1-4 and http://www.iaea.org/programmes/ripc/physics/fec2002/html/fec2002.htm
  • [4] P.H. Diamond, S.-I. Itoh, K. Itoh and T.S. Hahm, Plasma Phys. Control. Fusion 47, R35 (2005).
  • [5] M. Yagi, S. Yoshida, S.-I. Itoh, H. Naitou, H. Nagahara et al., Nucl. Fusion 45, 900 (2005).
  • [6] A. Furuya, M. Yagi and S.-I. Itoh, J. Phys. Soc. Jpn. 72, 313 (2003).
  • [7] O.J. Kwon, P.H. Diamond and H. Biglari, Phys. Fluids B 2 291 (1990).
  • [8] S.I. Braginskii, Reviews of Plasma Physics, ed. M.A. Leontovich (Consultant Bureau, New York, 1965) Vol.1.
  • [9] R.D. Hazeltine, M. Kotschenreuther and P.J. Morrison, Phys. Fluids 28, 2466 (1985).
  • [10] B. Scott, Plasma Phys. Control. Fusion 39, 471 (1997).
  • [11] S.P. Hirshman and D.J. Sigmar, Nucl. Fusion 21, 1079 (1981).
  • [12] J.D. Callen and K.C. Shaing, Phys. Fluids 28, 1845 (1985).
  • [13] T. Hayashi, Master thesis (Kyushu University, February 2007).
  • [14] B.B. Kadomtsev, Plasma Turbulence (Academic Press, New York, 1965).
  • [15] S.-I. Itoh, K. Itoh and M. Yagi, Phys. Rev. Lett. 91, 045003 (2003).
  • [16] S.-I. Itoh, K. Itoh and M. Yagi, Plasma Phys. Control. Fusion 46, 045003 (2004).
  • [17] P.H. Rutherford, Phys. Fluids 16, 1903 (1973).
  • [18] C.J. McDevitt and P.H. Diamond, Phys. Plasmas 13, 032302 (2006).

This paper may be cited as follows:

Masatoshi YAGI , Sanae-I. ITOH, Kimitaka ITOH, Masafumi AZUMI, Patrick H. DIAMOND, Atsushi FUKUYAMA and Takayuki HAYASHI, Plasma Fusion Res. 2, 025 (2007).