[Table of Contents]

Plasma and Fusion Research

Volume 2, 003 (2007)

Letters


Zonal Proton Generation from Target Edges Using Ultra-Intense Laser Pulse
Toshinori YABUUCHI1,2), Hideaki HABARA1,2), Motonobu TAMPO2), Ryosuke KODAMA1,2), Shinya AWANO1,2), Kiminori KONDO1,2), Kunioki MIMA2) and Kazuo A. TANAKA1,2)
1)
Graduate School of Engineering, Osaka University
2)
Institute of Laser Engineering, Osaka University
(Received 21 December 2006 / Accepted 10 January 2007 / Published 15 February 2007)

Abstract

Multi MeV proton beam is generated via target normal sheath acceleration when the target is irradiated with an ultra-intense laser pulse. In addition, a unique structure, “zonal pattern”, of energetic protons is observed in the perpendicular directions of the target edges using triangular targets. The sheath field production on the target edges may be responsible for this zonal pattern. Two dimensional particle-in-cell simulations show that the electrostatic field initially produced at around the cross point at the laser axis and the rear surface expands on the target surface in time. The field enhancement occurs at the target edges when the sheath field reaches there. The enhanced field can accelerate protons in a zonal pattern.


Keywords

ultra-intense laser, proton zonal emission, sheath field, particle-in-cell simulation

DOI: 10.1585/pfr.2.003


References

  • [1] M. Roth et al., Phys. Rev. Lett. 86, 436 (2001).
  • [2] M. Temporal, J.J. Honrubia and S. Atzeni, Phys. Plasmas 9, 3098 (2002).
  • [3] M. Borghesi et al., Phys. Plasmas 9, 2214 (2002).
  • [4] L. Romagnani et al., Phys. Rev. Lett. 95, 195001 (2005).
  • [5] A.J. Mackinnon et al., Phys. Rev. Lett. 97, 045001 (2006).
  • [6] K. Nemoto et al., Appl. Phys. Lett. 78, 595 (2001).
  • [7] S. Fritzler et al., Appl. Phys. Lett. 83, 3039 (2003).
  • [8] V. Malka et al., Med. Phys. 31, 1587 (2004).
  • [9] W. Luo et al., Med. Phys. 32, 794 (2005).
  • [10] S.C. Wilks et al., Phys. Plasmas 8, 542 (2001).
  • [11] R.A. Snavely et al., Phys. Rev. Lett. 85, 2945 (2000).
  • [12] A. Pukhov, Phys. Rev. Lett. 86, 3562 (2001).
  • [13] J. Fuchs et al., Nature Phys. 2, 48 (2006).
  • [14] Z.L. Chen et al., Phys. Rev. E 71, 036403 (2005).
  • [15] F.N. Beg et al., Phys. Plasmas 11, 2806 (2004).
  • [16] T.E. Cowan et al., Phys. Rev. Lett. 92, 204801 (2004).
  • [17] H. Schwoerer et al., Nature 439, 445 (2006).
  • [18] M. Zepf et al., Phys. Rev. Lett. 90, 064801 (2003).
  • [19] K.A. Tanaka et al., Rev. Sci. Instrum. 76, 013507 (2005).
  • [20] http://www.SRIM.org/ , see also J.F. Ziegler, J.P. Biersack and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).
  • [21] I. Kawrakow, Med. Phys. 27, 485 (2000).

This paper may be cited as follows:

Toshinori YABUUCHI, Hideaki HABARA, Motonobu TAMPO, Ryosuke KODAMA, Shinya AWANO, Kiminori KONDO, Kunioki MIMA and Kazuo A. TANAKA, Plasma Fusion Res. 2, 003 (2007).