[Table of Contents]

Plasma and Fusion Research

Volume 1, 045 (2006)

Regular Articles


Characteristics of Radiating Collapse at the Density Limit in the Large Helical Device
Byron J. PETERSON , Junichi MIYAZAWA, Kiyohiko NISHIMURA, Suguru MASUZAKI, Yoshio NAGAYAMA, Nobuyoshi OHYABU, Hiroshi YAMADA, Kozo YAMAZAKI, Takako KATO, Izumi MURAKAMI, Naoko ASHIKAWA, Yuhong XU1), Artem Y. KOSTRIOUKOV2), Yi LIU3), Ryuichi SAKAMOTO, Motoshi GOTO, Kazumichi NARIHARA, Masaki OSAKABE, Kenji TANAKA, Tokihiko TOKUZAWA, Mamoru SHOJI, Hisamichi FUNABA, Shigeru MORITA, Tomohiro MORISAKI, Osamu KANEKO, Kazuo KAWAHATA, Akio KOMORI, Shigeru SUDO, Osamu MOTOJIMA and the LHD Experiment Group
National Institute for Fusion Science
1)
Forschungszentrum Jülich
2)
St. Petersburg Technical University
3)
Southwest Institute of Physics
(Received 24 January 2006 / Accepted 19 June 2006 / Published 29 September 2006)

Abstract

Steady state densities of up to 1.6 × 1020 m-3 have been sustained using gas puff fuelling and NBI heating up to 11 MW in the Large Helical Device (LHD). The density limit in LHD is observed to be greater than 1.6 times the Sudo limit. The density is ultimately limited by a radiating collapse which is attributed to the onset of a radiative thermal instability of the light impurities in the edge region of the plasma based on several recent observations in LHD. First of all the onset of the radiative thermal instability is tied to a certain edge temperature threshold. Secondly, the onset of the thermal instability occurs first in oxygen and then carbon as expected from their cooling rate temperature dependencies. Finally, radiation profiles show that as the temperature drops and the plasma collapses the radiating zone broadens and moves inward. In addition, comparison of impurity lines with the total radiated power behaviour suggests that carbon is the dominant radiator. Two dimensional tomographic inversions of Absolute eXtreme UltraViolet Diode (AXUVD) array data and comparison of modelling with images of radiation brightness from imaging bolometers indicate that the poloidal asymmetry which accompanies the radiating collapse is roughly toroidally symmetric.


Keywords

Large Helical Device, density limit, radiating collapse, carbon impurity, edge electron temperature, imaging bolometer, poloidal asymmetry

DOI: 10.1585/pfr.1.045


References

  • [1] M. Greenwald, Plasma Phys. Control. Fusion 44, R27 (2002).
  • [2] H.C. Howe et al., Controlled Fusion and Plasma Physics (Proc. 16th Eur. Conf. Venice, 1989), vol.13B, part II, European Physical Society, Geneva 683 (1989).
  • [3] S. Sudo et al., Nucl. Fusion 30, 11 (1990).
  • [4] S. Hiroe et al., Nucl. Fusion 32, 1107 (1992).
  • [5] M.A. Ochando et al., Nucl. Fusion 37, 225 (1997).
  • [6] L. Giannone et al., Plasma Phys. Control. Fusion 42, 603 (2000).
  • [7] L. Giannone et al., Plasma Phys. Control. Fusion 44, 2149 (2002).
  • [8] B.J. Peterson et al., Phys. Plasmas 8, 3861 (2001).
  • [9] L. Giannone et al., Plasma Phys. Control. Fusion 45, 1713 (2003).
  • [10] Yuhong, Xu et al., Nucl. Fusion 42, 601 (2002).
  • [11] N. Ashikawa et al., J. Nucl. Mater. 313-316, 1103 (2003).
  • [12] K. Nishimura et al., J. Plasma Fusion Res. 79, 1216 (2003).
  • [13] H. Yamada et al., Nucl. Fusion 43, 749 (2003).
  • [14] J. Miyazawa et al., J. Plasma Fusion Res. 81, 302 (2005).
  • [15] J. Miyazawa et al., Plasma Phys. Control. Fusion 47, 801 (2005).
  • [16] J. Miyazawa et al., Plasma Phys. Control. Fusion 48, 325 (2006).
  • [17] U. Stroth et al., Nucl. Fusion 36, 1063 (1996).
  • [18] For Example, U. Stroth, Plasma Phys. Control. Fusion 40, 9 (1998).
  • [19] O. Motojima et al., Nucl. Fusion 45, S255 (2005).
  • [20] D.E. Post et al., at. Data Nucl. Tables 20, 397 (1977).
  • [21] B.J. Peterson et al., Nucl. Fusion 41, 519 (2001).
  • [22] B.J. Peterson et al., J. Nucl. Mater. 313-316, 1178 (2003).
  • [23] B.J. Peterson et al., Plasma Phys. Control. Fusion 45, 1167 (2003).
  • [24] D.E. Post et al., At. Data Nucl. Tables 20, 397 (1977).
  • [25] T. Morisaki et al., J. Nucl. Mater. 313-316, 548 (2003).
  • [26] K. Ida et al., Nucl. Fusion 45, 39 (2005).
  • [27] B.J. Peterson et al., J. Plasma Fusion Res. Series 3, 99 (2000).

This paper may be cited as follows:

Byron J. PETERSON , Junichi MIYAZAWA, Kiyohiko NISHIMURA, Suguru MASUZAKI, Yoshio NAGAYAMA, Nobuyoshi OHYABU, Hiroshi YAMADA, Kozo YAMAZAKI, Takako KATO, Izumi MURAKAMI, Naoko ASHIKAWA, Yuhong XU, Artem Y. KOSTRIOUKOV, Yi LIU, Ryuichi SAKAMOTO, Motoshi GOTO, Kazumichi NARIHARA, Masaki OSAKABE, Kenji TANAKA, Tokihiko TOKUZAWA, Mamoru SHOJI, Hisamichi FUNABA, Shigeru MORITA, Tomohiro MORISAKI, Osamu KANEKO, Kazuo KAWAHATA, Akio KOMORI, Shigeru SUDO, Osamu MOTOJIMA and the LHD Experiment Group, Plasma Fusion Res. 1, 045 (2006).