[Table of Contents]

Plasma and Fusion Research

Volume 1, 032 (2006)

Regular Articles


Study of Edge Transport Barrier Formation on CHS Plasma
Takashi MINAMI, Shoichi OKAMURA, Tsuyoshi AKIYAMA, Mitsutaka ISOBE, Tetsutaro OHISHI1), Haruhisa NAKANO2), Katsumi IDA, Akihide FUJISAWA, Kiichiro NAKAMURA, Kenichi NAGAOKA, Mikiro YOSHINUMA, Chihiro SUZUKI, Yasuo YOSHIMURA, Kazuo TOI, Masaki NISHIURA, Shinsuke OHSHIMA3), Zenzo NARUHIRO, Harukazu IGUCHI, Shin NISHIMURA, Akihiro SHIMIZU, Keisuke MATSUOKA and Chihiro TAKAHASHI
National Institute for Fusion Science
1)
Department of Quantum Engineering and System Science, Tokyo University
2)
Department of Fusion Science, The Graduate University for Advanced Studies
3)
Department of Energy Engineering and Science, Nagoya University
(Received 16 June 2005 / Accepted 20 April 2006 / Published 22 June 2006)

Abstract

An edge transport barrier (ETB) similar to the tokamak H-mode has been observed for beam-heated plasma with two co-injected Neutral Beam Injectors (NBIs) in CHS. The Hα emission showed a clear spontaneous drop followed by an increase of line-averaged electron density at the L-H transition. Stored energy increased by ˜ 40% with H-factor improvement up to ˜ 30% compared to the international stellarator scaling (ISS04v03). A rapid density increase in the edge region to two-times level of the L-mode was observed to accompany a ˜ 15% increase in the density gradient. An ETB was formed when the plasma density exceeded the lower density limit by ˜ 1.5 × 1013 cm-3 and the total NBI power exceeds the threshold level (Pdeposit / ne ˜ 200 × 10-13 kW/cm-3 at BT = 0.95 T, Rax = 92.1 cm, where Pdeposit is the deposited NBI power, ne is electron density, BT is troidal magnetic field strength and Rax is location of magnetic axis). The power threshold increased with the magnetic field strength, as in tokamak scaling, and depends on the magnetic field configuration of the helical plasma.


Keywords

edge transport barrier, helical plasma, H-mode, plasma confinement, improved confinement, threshold power, H-mode scaling, CHS

DOI: 10.1585/pfr.1.032


References

  • [1] A. Fujisawa et al., Phys. Rev. Lett 82, 2669 (1999).
  • [2] T. Minami et al., in Proc. 26th EPS Conf. on Contr. Fusion and Plasma physics, Maastricht (1999) p.1357.
  • [3] T. Minami et al., Nucl. Fusion 44, 342 (2004).
  • [4] K. Toi et al., Plasma Physics and Controlled Nuclear Fu-sion Research (Proc. Conf. Wurzburg, 1992), IAEA, Vienna (1993) vol. 2, p.461.
  • [5] K. Toi et al., Plasma Phys. Control. Fusion 38, 1289 (1996).
  • [6] V. Erckmann et al., Phys. Rev. Lett. 89, 2086 (1993).
  • [7] K. McCormick et al., Phys. Rev. Lett. 89, 015001 (2002).
  • [8] K. Toi et al., Phys. Plasmas 12, 020701 (2005).
  • [9] H. Okada et al., J. Plasma Fusion Res. 80, 883 (2004).
  • [10] S. Okamura et al., J. Plasma Fusion Res. 79, 977 (2003).
  • [11] S. Okamura et al., Plasma Phys. Control. Fusion 46, A113 (2004).
  • [12] H. Yamada et al., Proc. of 31th EPS Conf. on Contr. on Fusion and Plasma Phys. ECA Vol. 28G, P-5 099 (2004).
  • [13] K. Nakamura et al., Rev. Sci. Instrum. 76, 013504 (2005).
  • [14] T. Ohishi et al., Rev. Sci. Instrum. 75, 4118 (2004).
  • [15] S. Okamura et al., Nucl. Fusion 35, 283 (1995).
  • [16] J.A. Snipes et al., Fusion Energy 2002 (Proc. 19th int. Conf. Lyon, 2002) CT/P-04.
  • [17] T. Akiyama et al., Plasma Phys. Control. Fusion to be submitted.
  • [18] A.E. Hubbard, Plasma Phys. Control. Fusion 42, A15 (2000).
  • [19] S. Okamura et al., Nucl. Fusion 39, 1337 (1999).
  • [20] T. Minami et al., Plasma Phys. Control. Fusion 46, 285 (2004).

This paper may be cited as follows:

Takashi MINAMI, Shoichi OKAMURA, Tsuyoshi AKIYAMA, Mitsutaka ISOBE, Tetsutaro OHISHI, Haruhisa NAKANO, Katsumi IDA, Akihide FUJISAWA, Kiichiro NAKAMURA, Kenichi NAGAOKA, Mikiro YOSHINUMA, Chihiro SUZUKI, Yasuo YOSHIMURA, Kazuo TOI, Masaki NISHIURA, Shinsuke OHSHIMA, Zenzo NARUHIRO, Harukazu IGUCHI, Shin NISHIMURA, Akihiro SHIMIZU, Keisuke MATSUOKA and Chihiro TAKAHASHI, Plasma Fusion Res. 1, 032 (2006).