[Table of Contents]

Plasma and Fusion Research

Volume 1, 031 (2006)

Regular Articles


Development of Integrated SOL/Divertor Code and Simulation Study in JAEA
Hisato KAWASHIMA, Katsuhiro SHIMIZU, Tomonori TAKIZUKA, Shinji SAKURAI, Tomohide NAKANO, Nobuyuki ASAKURA and Takahisa OZEKI
Japan Atomic Energy Agency
(Received 12 December 2005 / Accepted 17 April 2006 / Published 28 June 2006)

Abstract

An integrated SOL/divertor code is being developed by the JAEA (Japan Atomic Energy Agency) for interpretation and prediction studies of the behavior of plasmas, neutrals, and impurities in the SOL/divertor region. A code system consists of the 2D fluid code for plasma (SOLDOR), the neutral Monte-Carlo code (NEUT2D), the impurity Monte-Carlo code (IMPMC), and the particle simulation code (PARASOL). The physical processes of neutrals and impurities are studied using the Monte Carlo (MC) code to accomplish highly accurate simulations. The so-called divertor code, SOLDOR/NEUT2D, has the following features: 1) a high-resolution oscillation-free scheme for solving fluid equations, 2) neutral transport calculation under the condition of fine meshes, 3) successful reduction of MC noise, and 4) optimization of the massive parallel computer. As a result, our code can obtain a steady state solution within 3 ˜ 4 hours even in the first run of a series of simulations, allowing the performance of an effective parameter survey. The simulation reproduces the X-point MARFE (multifaceted asymmetric radiation from edge) in the JT-60U. It is found that the chemically sputtered carbon at the dome causes radiation peaking near the X-point. The performance of divertor pumping in the JT-60U is evaluated based on particle balances. In regard to the divertor design of the next tokamak of JT-60U, the simulation indicates the dependencies of pumping effciency on the divertor geometry and operational conditions. The effciency is determined by the balance between the incident and back-flow fluxes into and from the exhaust chamber.


Keywords

SOL/divertor code, simulation study, Monte Carlo method, JT-60U, X-point MARFE, divertor pumping, pumping efficiency

DOI: 10.1585/pfr.1.031


References

  • [1] G. Janeschitz et al., J. Nucl. Mater. 290-293, 1 (2001).
  • [2] R. Schneider et al., J. Nucl. Mater. 196-198, 810 (1992).
  • [3] T.D. Rognlien et al., J. Nucl. Mater. 196-198, 347 (1992).
  • [4] R. Simonini et al., J. Nucl. Mater. 196-198, 369 (1992).
  • [5] K. Shimizu et al., J. Nucl. Mater. 313-316, 1277 (2003).
  • [6] K. Shimizu et al., J. Nucl. Mater. 220-222, 410 (1995).
  • [7] T. Takizuka, M. Hosokawa and K. Shimizu, Trans. Fusion Tech. 39, 111 (2001).
  • [8] S. Ide and the JT-60 team, Nucl. Fusion 45, S48 (2005).
  • [9] A. Isayama and the JT-60 team, Phys. Plasmas 12, 056117 (2005).
  • [10] H. Kawashima et al., Fusion Eng. Des. 81, 1613 (2006).
  • [11] H. Tamai et al., Proc. 20th IAEA Fusion Energy Conf. (Vilamoura, 2004) FT/P7-8, and references therein.
  • [12] B. Braams, A multi-uid code for simulation of the edge plasma in tokamaks, NET rep. EUR-FU IXII-80-87-68, Comm. of the European Communities (1987).
  • [13] S.R. Chacravarthy and S. Osher, A new class of high accuracy TVD schemes for hyperbolic conservation laws, AIAA paper 85-0363 (1985).
  • [14] D.E. Post, J. Nucl. Mater. 220-222, 143 (1995).
  • [15] M. Hughes and D. Post, J. Comput. Phys. 28, 43 (1978).
  • [16] D.B. Heifetz et al., J. Comp. Phys. 46, 309 (1982); D.B. Heifetz, Physics of Plasma-Wall Interactions in Controlled Fusion (D.E. Post and R. Behrisch, Eds., Plenum Press, New York and London, 1986) p.695.
  • [17] P.C. Stangeby and J.D. Elder, J. Nucl. Mater. 196-198, 258 (1992).
  • [18] K. Shimizu et al., J. Nucl. Mater. 196-198, 476 (1992).
  • [19] K. Shimizu et al., J. Nucl. Mater. 241-243, 167 (1997).
  • [20] D. Reiser et al., Nucl. Fusion 38, 165 (1998).
  • [21] K. Shimizu and T. Takizuka, Proc. 27th EPS on Controlled Fusion and Plasma Physics, (Budapest, Hungary), P4. 094 (2000).
  • [22] A.B. Ehrhardt and W.D. Langer, Princeton Plasma Physics Laboratory Report, PPPL-2477 (1987).
  • [23] K. Shimizu et al., Plasma Physics and Controlled Nuclear Fusion Research 1994 (Proc. 15th Int. Conf. Seville, 1994), Vol.3, IAEA, Vienna, 431 (1996).
  • [24] K. Shimizu and T. Takizuka, J. Plasma Fusion Res. 71, 801 (1995).
  • [25] J. Roth et al., Atomic and Plasma-Material Interaction Data for Fusion (Supplement to the journal Nuclear Fusion) Vol. 1, 63 (1991); J.V. Philips et al., J. Nucl. Mater. 313-316, 354 (2003).
  • [26] S. Higashijima et al., J. Nucl. Mater. 266-269, 1078 (1999).
  • [27] K. Shimizu and T. Takizuka, “Impurity transport code based on Monte Carlo techniques (IMPMC) ”, Tech. Mtg on ITER Divertor Physics Design, Garching, 1994.
  • [28] P.C. Stangeby and J.D. Elder, Nucl. Fusion 35, 1391 (1995).
  • [29] K. Shimizu et al., submitted to J. Nucl. Mater.
  • [30] R. Chodura, Phys. Fluids 25, 1628 (1982).
  • [31] T. Takizuka and M. Hosokawa, Contrib. Plasma. Phys. 40, 471 (2000).
  • [32] T. Takizuka, M. Hosokawa and K. Shimizu, J. Nucl. Mater. 313-316, 1331 (2003).
  • [33] T. Takizuka and H. Abe, J. Comput. Phys. 25, 205 (1977).
  • [34] A. Bergmann, Nucl. Fusion 42, 1162 (2002).
  • [35] T. Takizuka and M. Hosokawa, to be published in Contrib. Plasma Phys. (2006).
  • [36] ITER Physics Basis, Nucl. Fusion 39, 2391 (1999).
  • [37] T. Nakano, Proc. 4th Fusion Energy Association Meeting of AESJ and JSPF, 1A032 (2002).
  • [38] T. Fujimoto, Plasma Spectroscopy, ch.4 (Clarendon Press Oxford, 2004).
  • [39] S. Konoshima et al., J. Nucl. Mater. 313-316, 888 (2003).
  • [40] H. Takenaga et al., Nucl. Fusion 41, 1777 (2001).

This paper may be cited as follows:

Hisato KAWASHIMA, Katsuhiro SHIMIZU, Tomonori TAKIZUKA, Shinji SAKURAI, Tomohide NAKANO, Nobuyuki ASAKURA and Takahisa OZEKI, Plasma Fusion Res. 1, 031 (2006).