[Table of Contents]

Plasma and Fusion Research

Volume 1, 016 (2006)

Regular Articles


Modeling of Plasma Current Decay during Disruptions Caused by Massive Impurity Injection
Hirokazu OHWAKI, Masayoshi SUGIHARA1) and Akiyoshi HATAYAMA
Keio University
1)
ITER International Team, Naka JWS
(Received 14 March 2005 / Accepted 20 January 2006 / Published 28 March 2006)

Abstract

A numerical model is developed to evaluate the decay time of plasma current during the disruption following intense impurity injections. Our model is based on the power balance equation between joule heating and impurity radiation as a way to evaluate the electron temperature and charge state after the thermal quench. The model is applied to the experimental results of massive N2 gas injections in JFT-2M, which simulate the “ingress-of-coolant event” (ICE) as well as disruption mitigations in ITER. It is confirmed that the model can reproduce the experiments reasonably well.


Keywords

disruption, current decay time, impurity radiation, mitigation, tokamak

DOI: 10.1585/pfr.1.016


References

  • [1] M. Sugihara et al., Proc. 20th IAEA Fusion Energy Conf., Vilamoura, Portugal, 2004 (IAEA, Vienna, 2004), IT/P3-29.
  • [2] K. Masaki et al., J. Nucl. Mater. 220-222, 390 (1995).
  • [3] M.N. Rosenbluth, S.V. Putvinski, Nucl. Fusion 37, 1355 (1997).
  • [4] R. Yoshino et al., Nucl. Fusion 36, 295 (1996).
  • [5] R. Yoshino et al., Nucl. Fusion 37, 1161 (1997).
  • [6] V. Lukash et al., Plasma Phys. Control. Fusion 47, 2077 (2005).
  • [7] D.G. Whyte et al., J. Nucl. Mater. 313-316, 1239 (2003).
  • [8] B.V. Kuteev et al., Nucl. Fusion 35, 1167 (1995).
  • [9] M.N. Rosenbluth et al., Nucl. Fusion 37, 955 (1997).
  • [10] S.C. Jardin et al., Nucl. Fusion 40, 923 (2000).
  • [11] S. Putvinski et al., J. Nucl. Mater. 241-243, 316 (1997).
  • [12] Y. Kawano et al., J. Plasma Fusion Res. 81, 593 (2005).
  • [13] R. Yoshino et al., Nucl. Fusion 33, 1599 (1993).
  • [14] R. Yoshino et al., Nucl. Fusion 39, 151 (1999).
  • [15] R. Yoshino, S. Tokuda, Nucl. Fusion 40, 1293 (2000).
  • [16] R. Yoshino et al., Plasma Phys. Control. Fusion 39, 313 (1997).
  • [17] M. Bakhtiari et al., Nucl. Fusion 45, 318 (2005).
  • [18] G. Martin et al., Proc. 20th IAEA Fusion Energy Conf., Vilamoura, Portugal, 2004 (IAEA, Vienna, 2004), EX/10-6Rc.
  • [19] S. Sengoku et al., submitted to Nucl. Fusion.
  • [20] R.R. Khayrutdinov, V.E. Lukash, J. Comput. Phys. 109, 193 (1993).
  • [21] S.C. Jardin et al., J. Comput. Phys. 66, 481 (1986).
  • [22] D.G. Whyte et al., Proc. 24th Eur. Conf. on Controlled Fusion and Plasma Physics, Berchtesgaden, Germany, 1997 (European Physical Society, Geneva, 1997), Vol. 21A, 1137.
  • [23] ITER Physics Basis, Nucl. Fusion 39, 2333 (1999).
  • [24] T. Shoji et al., JAERI-M83-194 (1983).
  • [25] NRL plasma formulary, 2000, p. 34.
  • [26] H.P. Summers, JET-IR06 (1994), http://adas.phys.strath.ac.uk/

This paper may be cited as follows:

Hirokazu OHWAKI, Masayoshi SUGIHARA and Akiyoshi HATAYAMA, Plasma Fusion Res. 1, 016 (2006).