[Table of Contents]

Plasma and Fusion Research

Volume 1, 002 (2006)

Regular Articles


Non-Local Simulation of the Formation of Neoclassical Ambipolar Electric Field in Non-Axisymmetric Configurations
Shinsuke SATAKE, Masao OKAMOTO , Noriyoshi NAKAJIMA , Hideo SUGAMA and Masayuki YOKOYAMA
National Institute for Fusion Science
(Received 25 November 2004 / Accepted 28 November 2005 / Published 31 January 2006)

Abstract

Neoclassical transport simulation code (FORTEC-3D) applicable to non-axisymmetric configurations is developed. A new hybrid simulation model in which ion transport is solved by using the δf Monte-Carlo method including the finite-orbit-width effects, while electron transport is solved by a reduced ripple-averaged kinetic equation, is adopted. This model makes it possible to simulate the dynamism of non-local transport phenomena with a self-consistently developing radial electric field within an allowable computation time. Time evolution of a radial electric field in LHD plasma is simulated in the full volume of the confinement region, and the finite-orbit-width effect of neoclassical transport is found to make the negative ambipolar electric field larger than that predicted by local transport theory.


Keywords

neoclassical transport, ambipolar electric field, finite-orbit-width effect

DOI: 10.1585/pfr.1.002


References

  • [1] S.V. Novakovskii et al., Phys. Plasmas 4, 4272 (1997).
  • [2] M. Okamoto et al., J. Plasma Fusion Res. 78, 1344 (2002).
  • [3] W.X. Wang et al., Plasma Phys. Control. Fusion 41, 1091 (1999).
  • [4] S. Brunner et al., Phys. Plasmas 6, 4504 (1999).
  • [5] K.C. Shaing and R.D. Hazaltine, Phys. Fluids B 4, 2547 (1992).
  • [6] D.E. Hastings et al., Nucl. Fusion 25, 445 (1985).
  • [7] K.C. Shaing and J.D. Callen, Phys. Fluids 26, 3315 (1983).
  • [8] L.M. Kovrizhnykh, Nucl. Fusion 24, 851 (1984).
  • [9] S. Toda and K. Itoh, Plasma Phys. Control. Fusion 46, 1039 (2004).
  • [10] C.D. Beidler et al., Plasma Phys. Control. Fusion 37, 463 (1995).
  • [11] C.D. Beidler and H. Maaßberg, Plasma Phys. Control. Fusion 43, 1131 (2001).
  • [12] A. Iiyoshi et al., Fusion Technol. 17, 169 (1990).
  • [13] A.H. Boozer, Phys. Fluids 23, 904 (1980).
  • [14] S.P. Hirshman and O. Betancourt, J. Comput. Phys. 96, 99(1991).
  • [15] S. Satake et al., NIFS Report NIFS-828 (2005).
  • [16] M. Wakatani, Stellarator and Heliotron devices (Oxford Univ. Press, New York, 1998) p. 291.
  • [17] S. Satake, M. Okamoto and H. Sugama, Phys. Plasmas 9, 3946 (2002).
  • [18] S. Satake and M. Okamoto, J. Plasma Fusion Res. SERIES 6, 144 (2004).
  • [19] S. Murakami et al., Nucl. Fusion 42, L19 (2002).
  • [20] H.E. Mynick, T.K. Chu and A.H. Boozer, Phys. Rev. Lett. 48, 322 (1982).

This paper may be cited as follows:

Shinsuke SATAKE, Masao OKAMOTO , Noriyoshi NAKAJIMA , Hideo SUGAMA and Masayuki YOKOYAMA , Plasma Fusion Res. 1, 002 (2006).