Plasma and Fusion Research
Volume 20, 2101008 (2025)
Review Articles
- 1)
- Physics Department, 380 Duncan Drive, Auburn University, Auburn, AL 36849, USA
- 2)
- LULI - Sorbonne Université; CNRS, Ecole Polytechnique, CEA: Université Paris-Saclay – F-75252 Paris cedex 05, France
- 3)
- Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan
Abstract
Broadening of hydrogenic spectral lines is an important tool in spectroscopic diagnostics of various laboratory and astrophysical plasmas. We review recent analytical advances in five areas. First, we review a new method for spectroscopic diagnostics of tokamak edge plasmas based on a peculiar Stark broadening of hydrogen or deuterium spectral lines emitted by the injected neutral beam. Second, we review the analytical solution for the magnetic-field-caused narrowing of hydrogenic spectral lines under a circularly polarized electromagnetic wave. Third, we review analytical results concerning the Stark-Zeeman broadening of the Lyman-alpha line in plasmas. Forth, we review the effect of helical trajectories of electrons in strongly magnetized plasmas on the width of hydrogen/deuterium spectral lines. Fifth, we review recent analytical advances in the area of the intra-Stark spectroscopy: three different new methods, based on the emergent phenomenon of the Langmuir-wave-caused structures (“L-dips”) in the line profiles, for measuring super-strong magnetic fields of the GigaGauss range developing during relativistic laser-plasma interactions. We also review the rich physics behind the L-dips phenomenon – because there was a confusion in the literature in this regard.
Keywords
broadening of hydrogenic spectral lines in plasmas, strong magnetic field, intra-Stark spectroscopy, Langmuir-wave-caused structures, relativistic laser-plasma interactions, electron cyclotron waves
Full Text
References
- [1] E. Oks, Advances in x-ray spectroscopy of laser plasmas (IOP Publishing, Bristol, UK, 2020).
- [2] E. Oks, Diagnostics of laboratory and astrophysical plasmas using spectral lineshapes of one-, two-, and three-electron systems (World Scientific, Singapore, 2017).
- [3] H.-J. Kunze, Introduction to plasma spectroscopy (Springer, Berlin, 2009).
- [4] E. Oks, Stark broadening of hydrogen and hydrogenlike spectral lines in plasmas: the physical insight (Alpha Science International, Oxford, 2006).
- [5] T. Fujimoto, Plasma spectroscopy (Clarendon Press, Oxford, 2004).
- [6] H.R. Griem, Principles of plasma spectroscopy (Cambridge University Press, Cambridge, 1997).
- [7] E. Oks, Plasma spectroscopy: the influence of microwave and laser fields (Springer, New York, 1995).
- [8] D.E. Post and L.G. Votta, Phys. Today, January 2005, 35.
- [9] E. Oks, IEEE Trans. Plasma Sci. 52, 790 (2024).
- [10] J. Seidel, Z. Naturforsch. 34a,1385 (1979).
- [11] A. Derevianko and E. Oks, J. Quant. Spectr. Rad. Transfer 54, 137 (1995).
- [12] V.S. Lisitsa, Opt. Spectrosc. 31, 468 (1971).
- [13] Y.N. Demkov et al., Sov. Phys. JETP 30, 775 (1970).
- [14] E. Oks et al., Eur. Phys. J. Plus 138, 884 (2023).
- [15] A. Derevianko and E. Oks, Phys. Rev. Lett. 73, 2059 (1994).
- [16] A. Derevianko and E. Oks, Rev. Sci. Instrum. 68, 998 (1997).
- [17] E. Oks, Intern. Review Atom. Molec. Phys. 14, 43 (2023).
- [18] E. Stambulchik, Atoms 11, 120 (2023).
- [19] E. Oks, Intern. Review Atom. Molec. Phys. 2017, 8, 61.
- [20] E. Oks, Atoms 6, 50 (2018).
- [21] E. Oks, Intern. Review Atom. Molec. Phys. 15, 27 (2024).
- [22] S. Alexiou, Atoms 11, 141 (2023).
- [23] V.P. Gavrilenko and E. Oks, Sov. J. Plasma Phys. 13, 22 (1987).
- [24] V.P. Gavrilenko and E. Oks, Sov. Phys. JETP 53, 1122 (1981).
- [25] E. Oks et al., Phys. Rev. A 44, 8338 (1991).
- [26] G. Bertschinger, Diss. Dokt. Der Naturwissenschaften (Ruhr University, Bochum, 1980).
- [27] S. Alexiou, Atoms 11, 29 (2023).
- [28] E. Oks et al., Open Physics 22, 20240002 (2024).
- [29] Ya. B. Zeldovich, Sov. Phys. JETP 24, 1006 (1967).
- [30] V.I. Ritus, Sov. Phys. JETP 24, 1041 (1967).
- [31] E. Dalimier and E. Oks, Atoms 6, 60 (2018).
- [32] E. Oks et al., Spectrochimica Acta B 157, 1 (2019).
- [33] E. Dalimier et al., Intern. Review Atom. Molec. Phys. 11, 1 (2020).
- [34] E. Oks et al., J. Phys. B: At. Mol. Opt. Phys. 50, 245006 (2017).
- [35] D.I. Blochinzew, Phys. Z. Sov. Union 4, 501 (1933).
- [36] E. Oks and G.V. Sholin, Sov. Phys. Tech. Phys. 21, 144 (1976).
- [37] E. Oks and G.V. Sholin, Opt. Spectrosc. 42, 434 (1977).
- [38] A.I. Zhuzhunashvili and E. Oks, Sov. Phys. JETP 46, 1122 (1977).