Plasma and Fusion Research

Volume 20, 1403017 (2025)

Regular Articles


Development of Bounce-Time-Based Orbit-Following Monte-Carlo Code
Kouji SHINOHARA1), Keiji TANI2), Nobuhiko HAYASHI3), Shuhei SUMIDA3), Akira EJIRI1), Naoto TSUJII1), Masanobu SUZUKI3), Andreas BIERWAGE3), Seiya NISHIMURA3), Yi PENG1), Yu-Ting LIN1), Yiming TIAN1), Fumiya ADACHI1)
1)
The University of Tokyo, Chiba, 277-8561, Japan
2)
Kyoto Fusioneering, Tokyo, 100-0004, Japan
3)
National Institutes for Quantum Science and Technology (QST), Naka Institute for Fusion Science and Technology, Ibaraki 311-0193, Japan
(Received 1 December 2024 / Accepted 18 December 2024 / Published 9 April 2025)

Abstract

We developed a bounce-time (BT)-based orbit-following Monte-Carlo code as an extension of the OFMC code in QST. In the BT-based method, we take a bounce time as a time step of the orbit following. The time step is ~ 100 times longer than the gyro period which is a typical time step for the conventional guiding-center (GC) method. In the BT-based method, an accurate and simple estimation of a poloidal projection of the bounce orbit and a staying time are essential. An expression for the orbit gives us an orbit shape by a small calculation with the difference of less than 1% of the minor radius, compared with the GC method with the same fast ion parameters. And an approximate expression for the staying time also gives us the staying time with a good accuracy for our purpose. We can see a good agreement between calculation results for the BT-based method and those for the GC method in an axisymmetric condition. The BT-based method is 70–140 times faster than the GC method, depending on the slowing-down time.


Keywords

fast ion transport, bounce time, finite orbit width, Monte-Carlo code, tokamak

DOI: 10.1585/pfr.20.1403017


References

  • [1] K. Tani et al., J. Phys. Soc. Japan 50, 1726 (1981).
  • [2] K. Tobita et al., Nucl. Fusion 35, 1585 (1995).
  • [3] K. Shinohara et al., Nucl. Fusion 47, 997 (2007).
  • [4] K. Shinohara et al., Nucl. Fusion 43, 586 (2003).
  • [5] G.J. Kramer et al., Nucl. Fusion 53, 123018 (2013).
  • [6] K. Shinohara et al., Fusion Eng. Des. 84, 24 (2009).
  • [7] K. Shinohara et al., Nucl. Fusion 51, 063028 (2011).
  • [8] K. Tani et al., Nucl. Fusion 52, 013012 (2012).
  • [9] K. Shinohara et al., Nucl. Fusion 52, 094008 (2012).
  • [10] K.G. McClements et al., Plasma Phys. Control. Fusion 60, 095005 (2018).
  • [11] Ph. Lauber et al., Nucl. Fusion 64, 096010 (2024).
  • [12] G. Meng et al., Nucl. Fusion 64, 096009 (2024).
  • [13] A. Fasoli et al., Nucl. Fusion 48, S264 (2007).
  • [14] B.A. Trubnikov, Rev. Plasma Phys. 1, 105 (1965).
  • [15] K. Tani et al., J. Comp. Phys. 98, 332 (1992).
  • [16] K. Tani et al., Nucl. Fusion 48, 085001 (2008).
  • [17] K. Shinohara et al., Nucl. Fusion 60, 096032 (2020). The orbit helicity is referred to as orbit pitch in the paper.