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We developed a bounce-time (BT)-based orbit-following Monte-Carlo code as an extension of the OFMC code
in QST. In the BT-based method, we take a bounce time as a time step of the orbit following. The time step is ~ 100
times longer than the gyro period which is a typical time step for the conventional guiding-center (GC) method. In the
BT-based method, an accurate and simple estimation of a poloidal projection of the bounce orbit and a staying time
are essential. An expression for the orbit gives us an orbit shape by a small calculation with the difference of less than
1% of the minor radius, compared with the GC method with the same fast ion parameters. And an approximate
expression for the staying time also gives us the staying time with a good accuracy for our purpose. We can see a
good agreement between calculation results for the BT-based method and those for the GC method in an
axisymmetric condition. The BT-based method is 70–140 times faster than the GC method, depending on the
slowing-down time.
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1. Introduction
Heating, current drive, and torque input distribution by

fast ions such as alpha particles or generated by neutral parti-
cle beams (NB) are important for an operational scenario
design of a fusion reactor and a quantitative interpretation of
experimental data. At QST, we have determined the fast ion
distribution required for these distributions by tracking the
trajectories of many test particles or marker particles using a
Monte-Carlo numerical calculation code called OFMC [1].
In the OFMC, the beam source position and direction of the
NB are arranged to match the actual NB injector, so that the
initial distribution of birth fast ions, including the pitch angle,
can simulate the actual situation or experimental condition.
In addition, the code can easily handle realistic magnetic per-
turbation and first-wall shape. Due to this implementation,
the code well reproduced the experimental results such as wall
heat-load in JT-60U [2, 3], JFT-2M [4], JET and DIII-D [5]
tokamaks in various conditions and contributed to ITER
design activities [6–9].

In the many standard orbit-following codes, when track-
ing particle trajectories, a guiding center (GC) trajectory cal-
culation which uses a gyro period as a typical time step unit
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is used instead of tracking “particle” trajectories in order to
shorten calculation time. The guiding center calculation, or a
drift-orbit calculation, can be applied to a condition with
electric and magnetic field variations where the gyro radius
can be considered closed during the gyro cycle. This condi-
tion is well met in most magnetic confinement devices, even
in a low field-strength tokamak such as MAST [10].

In an operation scenario design, it is necessary to try
many NB injection patterns, thus numerical calculations with
shorter calculation time or lower calculation load are desired.
In addition, a local velocity distribution function in phase
space is required when trying to simulate fast ion diagnostics
such as neutron distribution measurement, or when dis-
cussing velocity space instability such as an ion cyclotron
emission (ICE). Determining the local velocity distribution
function using the test-particle method requires a large num-
ber of test particles, which requires a large computational
resource, in order to reduce a Mote-Carlo noise. A computa-
tional method with a low computational load is desired from
these backgrounds.

We consider the calculation-time reduction using the
same idea as in introducing guide-center calculation. A parti-
cle in an axis-symmetric tokamak has a closed orbit projection
on a poloidal cross-section, characterized by a toroidal canon-
ical angular momentum. The time period of the closed orbit
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is a bounce time. The axis-symmetry is well realized in most
regions in tokamak devices. Thus, the assumption of the axis-
symmetry is a reasonable assumption which we are based on.
The bounce period is the next shortest period after the gyro
period for a particle orbit in the tokamak. Note the bounce
time is used for many different periodic motions in plasma
physics. In this paper, the bounce time is defined as the
period of a periodic orbit in a poloidal cross section, and is
expressed as

τb = pol
dlpolvpol , (1)

where dlpol is the line element along the trajectory of the
guide center projected onto the poloidal cross section, and vpol
is the velocity of the guiding center projected on the poloidal
cross section. The integration is performed for one round of a
closed periodic orbit on a poloidal cross section. This peri-
odic orbit is a banana shape for trapped particles, or a shape
which is like a shifted poloidal flux surface in the radial direc-
tion for passing particles (Fig. 1). This bounce period is more
than 100 times longer than the period of the gyromotion. If
we can define this closed orbit, we can utilize this bounce
period for a time step of an “orbit-following” calculation.
Then, it is expected that we can reduce the calculation time.

Here the word “orbit-following” should be understood
in the sense of following the collisional motion of test parti-
cles that represent entire GC drift orbits in the reduced 3-D
phase space of the (Pφ, E, Λ), which comprise the complete
set of constants of motion (CoM) in an axisymmetric system,
with Pφ being the toroidal canonical angular momentum, Λ
the pitch parameter, E the kinetic energy of the particle.

This idea itself is not new and has been used in a frame-

work of a bounce-averaged Fokker-Plank approximation, in
which, a Fokker-Plank equation is numerically solved. Our
approach differs from the usual Fokker-Planck solvers in two
ways. First, instead of evolving the distribution function
directly, we use the framework of the OFMC code; that is,
the Monte-Carlo method. Second, instead of entirely elimi-
nating the (R, z)-dependence by bounce-averaging the equa-
tions of motion, we retain it in the form of an analytical
approximation of the orbit contour and parallel motion. Thus,
our approach can be seen as option to analytically short-cut
the conventional orbit-following calculation in OFMC. It is
thus straightforward to switch between the conventional
orbit-following solver and the accelerated bounce-time (BT)-
method when necessary, and they may even be run side-by-
side for different regions of phase space (for instance, in the
case when the analytical approximations are not sufficiently
accurate for certain orbits as shown later). In addition, our
approach fully accounts for the magnetic drifts known as
finite orbit width (FOW) effect, since we utilize the orbit
shape projection on the poloidal cross-section, while conven-
tional Fokker-Plank codes ignore the FOW effect or use the
model in which an orbit deviation from a poloidal flux sur-
face is assumed to be small. (Note some Fokker-Plank codes
with the capability of fully taking into account the FOW
have been developed; e.g. ATEP-3D code [11, 12].) How-
ever, the orbit deviation is finite. It reaches 1/4 of the minor
radius in some cases and the banana width reaches 1/2 of the
minor radius. and it can be about 5% of the minor radius for
the alpha particles in the ITER for the parameter in Ref. [13].
The orbit deviation or the finite orbit width affects a heating
and current drive profile. Our method can handle the orbit
width effect.

Fig. 1. A poloidal projection of an orbit for a co-passing particle (a), for a counter-passing particle (b), and for a trapped particle (c). The particle species
is deuteron. The points obtained by Eq. (10) are shown in red closed circles. The blue curve represents an orbit obtained by the GC calculation.
The first “wall” for the calculation in the “Results” section is indicated by an arrow in the panel (b). The Rh, Rl, Rctr, and Rco are the major radial
positions which appear in Fig. 2. Each of them corresponds to the major radial position of an orbit on the midplane.
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This paper is organized as follows. We describe the
method and its implementation in Sec. 2. The key of the imple-
mentation is how we well and simply evaluate an orbit shape.
We describe the method and show a comparison between the
evaluated orbit and the orbit calculated by the motion equa-
tion of the GC. In the connection with a slowdown process
and a heating distribution, we also describe the implementa-
tion on a collision between a bulk plasma and a fast ion. In
Sec. 3, the results are compared with the GC calculation. The
summary is given in Sec. 4.

2. Method and Implementation
2.1 Abstract of fast ion transport and its interac-

tion with bulk plasma
Here, we describe the abstract of the implementation. In

an axisymmetric system or an ideal tokamak, a fast ion orbit
is characterized by the labels of (Pφ, E, Λ, sign v∥ ), wheresign v∥  is the sign of the velocity of the particle against the
plasma current. A set of the labels represents a closed GC
orbit on a poloidal cross-section. The summation of orbits
gives the fast ion distribution in real space. The orbit is not
changed unless the set of the labels is changed; that is, the
simulation particle does not “move” in the 3-D CoM space.
The mechanism to change the labels or to move the particle
is a collision. The collision is mainly the interaction with bulk
plasma. The collision introduces heating of the bulk plasma.
Since we take into account the finite-orbit effect or know the
orbit shape for a set of (Pφ, E, Λ, sign v∥ ) in the real space
as described below, we can evaluate a heating distribution
accurately, compared with conventional Fokker-Plank solvers.
The collision also changes the quantities of (Pφ, E, Λ, sign v∥ ),
namely transports the fast ion in a phase space, depending on
the plasma parameters at the collision. In this way, how the
orbit in real space is well and simply evaluated is the key of
this approach. In the following, we show how we evaluate
the orbit and show a comparison between the evaluated orbit
and the orbit calculated by the motion equation of the GC.

2.2 Description of orbit in the real space
The key is to evaluate the orbit characterized by (Pφ, E,Λ, sign v∥ ) as accurately and simply as possible.
The definition of these values are

Pφ = qψp − MRvφ, (2)

E = 12 Mv2 = 12 M v∥2 + v⊥2 , (3)

Λ = μB0E . (4)

Here, q is the electric charge of a fast ion, ψp is the poloidal
flux function, M is the mass of the fast ion, R is the major
radial position at the fast ion position, B0 is the magnetic
field strength at the magnetic axis, and vφ is the velocity of

the fast ion in the toroidal direction, respectively. The v∥ andv⊥ are the velocity of the fast ion in the direction parallel and
perpendicular to the magnetic field, respectively. The μ is the
magnetic moment defined as μ ≡ Mv⊥2 /2B. We use

Pφ ≡ Pφ/q = ψp − Mq Rvφ, (5)

instead of Pφ. This form easily relates to the poloidal flux
function ψp and the second term represents the finite orbit
effect or the orbit deviation from a flux surface. (This form Pφ
is also known as ψp*.) We assume the toroidal field strength is
inversely proportional to R or BφR = B0R0 = const., ignoring
the diamagnetic effect and we also assume Bφ ∼ B, where R0
is the major radius value at the magnetic axis, B is the total
magnetic field strength. Then, we approximate Pφ as follows;

Pφ = ψp − Mq R BφB v∥
∼ ψp − Mq Rv∥.  (6)

We can also have

E = 12 Mv∥2 + μB
∼ 12 Mv∥2 + μ B0R0R . (7)

Now we define Rtip asRtip ≡ ΛR0. (8)

In the case of a trapped particle, this Rtip represents the major
radius position of the banana tip because the v∥ = 0 at the
banana tip of R = Rtip in Eq. (7).

By using Eqs. (7) and (8), we can write the parallel
velocity at the position of R asv∥ = sign v∥ 2E/M 1 − Rtip/R. (9)

Then, Eq. (6) leads toψp = Pφ + sign v∥ 2EMq R R − Rtip . (10)

From this equation, we can have the poloidal projection of an
orbit for a given set of (Pφ, E, Λ, sign v∥ ). When we specify
a radial position R, the right-hand-side of the Eq. (10) is deter-
mined and we can specify a poloidal flux. Then we can deter-
mine two vertical positions using a mapping of ψp R, Z
since a specific poloidal flux passes two vertical position at a
specific radial position inside a separatrix.

In Fig. 1, we compare the poloidal projection of a orbit
between the one obtained by the Eq. (10) and the one obtained
by the GC calculation for an equilibrium of E039672 in the
JT-60U, with B0/ Ip/ ψp0 = 1.2T/0.6MA/−0.26, where Ip andψp0 are the plasma current and the value of the poloidal flux
function at the magnetic axis, respectively. We define the
plasma surface with ψp = 0. The direction of the plasma cur-
rent and the toroidal field are both in the clock-wise direction
from the top of the torus. Figure 1(a) is the case of (Pφ, E, Λ,sign v∥ ) = (−0.166, 85.9 keV, 0.77, +). This is a co-passing
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orbit, where co- means the particle is going in the plasma
current direction. The points obtained by Eq. (10) are shown in
red closed circles. And the blue curve is obtained by the GC
calculation. Figure 1(b) is the case of (Pφ, E, Λ, sign v∥ ) =
(0.035, 83.5 keV, 0.147, −). This is a counter (ctr)-passing
orbit. Figure 1(c) is the case of (Pφ, E, Λ) = (−0.222, 85.9 keV,
0.993), which is a trapped orbit. We can see a good agree-
ment. The normalized difference Δr/a to the minor radius is
less than 1% to GC. This is good enough for our purpose.
Note that the dots in Fig. 1 do not represent the time steps of
an “orbit following” in real space. The number of dots just
indicates the spatial resolution for the evaluation of distribu-
tions shown in Fig. 8 or collision point which affects the
heating distributions shown in Fig. 9.

2.3 Collision
The mechanism to change the orbit is a collision in an

axisymmetric system. At the collision point, the energy of a
fast ion is transferred to an electron or ion.

We use the Trubnikov model to describe the collision [1,
14]. In the model, the effect of a collision, which is a change
in velocity, depends on a specified interval time between col-
lisions as follows. In the model, the change of the velocity in
the direction to the original movement or the longitudinal direc-
tion, ΔvL, consists of the averaged change, ΔvL, and the sta-
tistical deviation from the averaged change, ΔvL2. The
average change ΔvL is proportional to the interval time between
collisions while the deviation ΔvL2 is proportional to the
square root of the collision interval time. The velocity
change in the transverse direction to the original movement,ΔvT, consists of two components in the same manner as ΔvL,
however the average component is always zero. Thus, the
changes in both longitudinal and transverse directions get
larger as the collision interval is longer.

The orbit is characterized by (Pφ, E, Λ, sign v∥ ). A col-
lision changes these quantities. In order reasonably to
describe a transport of fast ions, it is preferable that the varia-
tions (ΔPφ/ψp0, ΔE, ΔΛ) are small at “a collision” since the
variations are the step-size of the evolution in the phase
space. For the collision interval of τb, the variations areΔPφ/ψp0 ~ 1 × 10−4, ΔE ~ 4 × 10−2 keV, ΔΛ ~ 3 × 10−4 for the
beam energy of 40 × Te0 or 84 keV, ΔPφ/ψp0 ~ 7 × 10−4,ΔE ~ 8 × 10−2 keV, ΔΛ ~ 1 × 10−3 for the beam energy of10 × Te0, and ΔPφ/ψp0 ~ 6 × 10−4, ΔE ~ 2 × 10−2 keV, ΔΛ ~
3 × 10−3 for the beam energy of 5 × Te0 for the plasma param-
eters in the Sec. 3, where Te0 is the electron temperature at
the magnetic axis. Thus, the variations are reasonably small
for the evaluation of the transport, though the resolution gets
worse for lower energy. Namely, it is reasonable to choose
the bounce period, τb, as a collision interval. The usage of a
long collision-interval of this order was also validated by the
GC method. The fast ion distribution for the collision-
interval of 5 × 10−4 of the slowing down time, which is com-
parable to a typical bounce time, was almost identical to
those for the collision-interval of 1 × 10−6 of the slowing
down time in the GC calculations.

The collision position, Rcol, is randomly determined with
taking into account the staying time as shown below. The
plasma parameters for a collision are given in a coordinate of
a poloidal flux. The poloidal flux is determined at R = Rcol
by using Eq. (10). Here, this must be done at each time step,
because we follow MC marker particles in CoM space, so
they may travel into regions of varying collisionality. In the
case of ATEP-3D code [11, 12], which operates on a fixed
CoM mesh, the collision operator needs to be computed for
each mesh point only once in a stationary system (and may
be updated occasionally when the background evolves slowly).
Currently, ATEP-3D performs the average procedure along
numerically computed GC orbits.

2.4 Staying time and bounce time
When we choose a collision point in a specific orbit, it is

reasonable to give a higher possibility to a point where a
staying time or traversal time of a particle is longer. The
staying time is not constant at each position in an orbit since
the velocity projected on a poloidal cross-section depends on
its position. It is an important factor to evaluate the staying
time as accurately and simply as possible. We use the following
approximation for the staying time Δt at the major radius R.

Δt = Δlpolvpol = ΔlvGC ∼ Δl∥v∥= 1v∥ BBR ΔR ,  (11)

where Δlpol is a line segment of a GC orbit projected on a
poloidal cross-section, vpol is the velocity of the GC motion
projected on the poloidal cross-section, Δl is a line segment
along the GC orbit, Δl∥ is its parallel component to the mag-
netic field, BR is the radial component of the magnetic field
strength. When R is given, we determine ψp from Eq. (10).
Then, we can calculate all the components of the right-hand-
side; v∥ R  using Eq. (9), B R, ψp , and BR R, ψp .

In the code, we use a bounce time, τb, as an interval time
for a collision. The bounce time is evaluated by the follow-
ing expression;

τb = pol
dlpolvpol

= 0
τbdt

∼ Rl
Rℎ 1v∥ BBR dR upper half

+ Rℎ
Rl 1v∥ BBR dR lower half,

 (12)

for a passing particle, where Rℎ and Rl are the smallest and
the largest radial positions in a specific orbit, respectively as
shown in Fig. 1. The h and l denote the high- and the low-
field-sides. The first term in the last line is the integration for
the upper-half part of the orbit and the second term is that for
the lower-half part of the orbit. For a trapped particle,
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τb ∼ Rco
Rtip 1v∥ BBR dR upper half

+ Rtip
Rctr 1v∥ BBR dR upper half

+ Rctr
Rtip 1v∥ BBR dR lower half

+ Rtip
Rco 1v∥ BBR dR lower half,

 (13)

where Rco is the largest radial position in a co-passing move-
ment to the plasma current, and Rctr the largest radial position
in a counter(ctr)-passing movement as shown in Fig. 1(c).
The first and second terms are the integrations for the upper-
half part of the orbit and the third and fourth terms are those
for the lower-half part of the orbit.

To calculate the bounce time formulated in the above,
we need to know the values of the Rℎ, Rl, Rco, and Rctr in
addition to the Rtip. These four values are obtained by evalu-
ating the intersection of two curves shown in Fig. 2. The
blue-solid curve in Fig. 2 is the poloidal flux function, ψp, on
the mid-plane. The other red curve is obtained by the Eq.
(10), which represents the relation between a poloidal flux
and the radial coordinate for an orbit.

In the panels (a) in Figs. 3–5, we compare the staying
time, Δt, between the one obtained by Eq. (12) or Eq. (13)
and the one obtained by the GC calculation for the same
equilibrium as Fig. 1. In addition, the time coordinate along
an orbit, which is defined in

t l = dl∥v∥ = 1v∥ BBR dR , (14)

is also compared in the panels (b) in these figures. Figure 3
is the case of the co-passing orbit with (Pφ, E, Λ, sign v∥ ) in
Fig. 1(a). Figure 4 is the case of the ctr-passing orbit in
Fig. 1(b). And Fig. 5 is the case of the trapped orbit in Fig.
1(c). We can see a good agreement in the staying time and
time coordinate. This is good enough for our purpose. The
coordinate, l, is resented by the normalized poloidal flux,ψpN, in the figures. (The relation between ψpN and ψp isψpN ≡ 1 − ψp/ψp0.) For this coordinate, the integration
region in Eq. (14) is from Rl to R between Rℎ and Rl in Fig. 3,

is from Rℎ to R between Rℎ and Rl in Fig. 4, and is from Rco
to R between Rco and Rtip and then between Rtip and Rctr for
the upper-half part of the orbit. The relation between R andψpN can be obtained through Eq. (10). For the full bounce
motion, it is also evaluated in the lower-half part of the orbit
in the same way.

2.5 Loss orbit
A particle cannot travel when the orbit intersects a loss

boundary. The loss boundary is a first wall structure in a real-
istic case. However, a complicated procedure is required to
know whether the orbit intersects the realistic first wall. Here,
we set a loss boundary at the plasma surface or separatrix.
We consider a particle is lost when ψp is larger than 0 since
the separatrix lies at ψp = 0 in our calculation. To implement
a realistic loss boundary is a future work.

2.6 Evaluation of fast ion density and driven
current
Here, we describe how to evaluate profiles related to

fast ions. Each orbit in the real space is divided into many
segments. The “staying time”, Δt, at a segment is multiplied
with the weight, wi, of the test particle. In this calculation,
the weight is the same for all the particles. Instead, the num-
ber of particles are proportional to the value of Pinjk/Einjk,
where Pinjk is the injected beam power, Einjk the injected
energy from kth injector. The value wiΔt is summed up at the
position of ψp where the segment lies. In this way, the fast
ion density profile is obtained. The fast ion energy density is
obtained when the particle energy is multiplied in addition at
the segment.

To evaluate the NB current drive (NBCD) profile, the
value of j∥B ψp is used [15, 16], where X ψp is the flux
averaged value of X . The value is approximately obtained as
follows;

j∥B ψp= q/ΔVψp i, ki v∥B wiΔt |for a segment withψp in kitℎorbit
= q/ΔVψp i, ki wi B2BR ΔR|for a segment withψp in kitℎorbit ,  (15)

Fig. 2. Plots which show that the positions of Rℎ, Rl, Rctr, and Rco. These positions are the intersection of two curves. The red curve is given by Eq. (10).
The blue curve represents a poloidal flux on the mid-plane. (a) is for a co-passing particle, (b) for a counter-passing particle, and (c) for a trapped
particle (c).
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where i represents the index for a test particle, wi the weight
of the test particle, ΔVψp is the volume of a shell specified by
a ψp. Namely, the value qwi B2/BR ΔR in a segment with ψp
in the kitℎ bounce orbit is summed over all test particles till
the slowdown. The NBCD profile is obtained by multiplyingj∥B ψp with a geometrical coefficient and a coefficient for an
electron shielding [15, 16].

3. Comparison between BT and GC Method
Here, we show results of the BT method by comparing

with those of the GC method in an axisymmetric condition.
The BT method is implemented as a module in the

framework of the OFMC code. Thus, we start the calculation
with the same birth profile of beam ions.

The plasma parameters are as follows. The equilibrium
is shown in Fig. 1. The profiles of electron density, electron
temperature, and ion temperature are depicted in Fig. 6. The
effective charge number, Zeff, is uniform and its value is 2.1.
The impurity species is carbon alone. The beams are three
deuteron beams of ~ 85 keV. The birth profile of the induced
ions are shown in Fig. 7. One beam is injected in the co-
parallel direction to the plasma current, and one is injected in
the counter-parallel direction to the plasma current, and the
last beam is injected nearly into the perpendicular direction
to the current. The number of test particles is 20,000.

Fig. 3. The comparison of the staying time (a) and time coordinate (b)
at a position along an orbit. The horizontal axis is described in
the normalized poloidal flux, ψpN. The red dots represent the
one by Eq. (11) or (14), and the blue dots represent the one
obtained by a GC calculation. The comparison is carried out for
the upper-half part of an orbit. The parameters of (Pφ, E, Λ,sign v∥ ) which characterizes the orbit are those in Fig. 1(a).
The orbit type is the co-passing orbit.

The results by the BT method are compared with those by
the GC method in Fig. 8. Profiles of fast ion energy density,j∥B ψp, and NBCD are compared in Figs. 8(a), (b), and (c),
respectively. In each panel, a black solid curve is obtained by
the GC method and three non-solid curves (dotted, dashed,
and dash-dot) are obtained by the BT method. The different

Fig. 4. The comparison of the staying time (a) and time coordinate (b)
for the parameters in Fig. 1(b). The orbit type is the ctr-passing
orbit.

Fig. 5. The comparison of the staying time (a) and time coordinate (b)
for the parameters in Fig. 1(c). The orbit type is the banana orbit.
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results for the BT method are obtained with different seeds
for random numbers for the Monte-Carlo calculation. Thus,
the scatter indicates the Monte-Carlo noise level. (We also
observed the same level of the Monte-Carlo noise in the GC

Fig. 6. Profiles of electron density (a), electron temperature (b), and
ion temperature (c).

Fig. 8. The comparison of profiles of the fast ion energy density (a),j∥B ψp (b), neutral beam current density (c). The solid curve
obtained by the GC method and three non-solid curves are
obtained by the BT method.

method.) We can see a good agreement in the level of
Monte-Carlo noise except for a difference of < 20% near
magnetic axis in the fast ion energy density. The possible
cause of the difference will be discussed below.

The profiles of electron, bulk deuteron, and impurity
(carbon) heating are also compared in Fig. 9. We can also see
a good agreement except for the region near magnetic axis.

The calculation time has gotten shorter by introducing
the BT-based method. The BT method is more than 70 times
faster than the GC method, or 85 minutes for the GC method
and 1.2 minutes for the BT method in our environment. The
speed up ratio depends on the slowing-down time. The ratio
was ~ 70 times for the slowing-down time of 0.3s and it
reached ~ 140 times for the slowing-down time of 1.4s.

Fig. 7. The birth distribution of NB injected ions. It is viewed from the
top of the torus. The direction of plasma current and toroidal
field is the clock-wise direction.

Fig. 9. The comparison of profiles of deposit power to bulk deuterons (a),
deposit power to bulk electrons (b), deposit power to impurity
carbon ions (c). The solid curve obtained by the GC method
and three non-solid curves are obtained by the BT method.
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Here, we shortly discuss the difference observed in the
fast ion energy density in Fig. 8(a). The possible cause could
be the small difference of the orbit shape of “shallowly”
trapped particles. One of them is shown in Fig. 10. We accept
a small difference in the orbit shape which is Δr/a < 0.01 as
described in the above, however its relative difference of
~ 10%, shown by the shaded box in the Fig. 10(c), in an
inner leg part of the trapped orbit can affect the population
near magnetic axis, where such inner legs of “shallowly”
trapped particles can lie. Here, the inner leg indicates the part
of a trapped orbit which lies on the side of the magnetic axis
or has its major radius between Rtip and Rctr. This difference
is induced by the approximation used in Eq. (10). Because of
the approximation of Bφ ∼ B, the second term on the right-
hand-side in Eq. (10) is affected. Then, the red curve in Fig.
2(c) by Eq. (10) tends to be narrower in the vertical direction
than the corresponding curve evaluated by the GC method.
This results in the situation that the inner leg tends to be
longer in our method.

The absence of blue dots in the shaded region means
that the orbit by the GC calculation is absence in the region.
This leads to the fact that the orbit by the GC calculation stays
for a shorter time near the magnetic axis than the orbit by
Eq. (10) by the amount of the sum of Δt in the shaded
region. Then, the orbit for the BT method stays for a some-
what longer time than that for the GC method near the mag-
netic axis. In addition, the staying time evaluation in Eq. (11)
can be larger since BR is small in the region. These could lead
to the larger population in the region.

4. Summary
We developed a bounce-time-based orbit-following Monte-

Carlo code as an extension of the OFMC code in QST. In the
BT-based method, we take a bounce time as a time step of
the orbit-following which is the “orbit-following” in the 3D
phase space of (Pφ, E, Λ). The time step is ~ 100 times longer

than the gyro period which is the characteristic time for the
GC method. In the BT-based method, an accurate and simple
estimation of a poloidal projection of the bounce orbit and a
staying time are essential. The simple formulation Eq. (10)
gives us an orbit shape with the difference of less than 1% of
the minor radius, compared with the GC method with the same
fast ion parameters. And the simple formulation Eq. (11) also
gives us a staying time with a good accuracy for our purpose.

We can see a good agreement between calculation results
for the BT-based method and those for the GC method in an
axisymmetric condition. The BT-based method is 70–140
times faster than the GC method, depending on the slow-
down time. It is expected that the BT-based method will con-
tribute to speeding-up the scenario development.

The next step is the development of the hybrid code in
which the GC method is used only in given conditions.

The first target for the condition is the “shallowly” trapped
orbit. The GC method will be used for “shallowly” trapped
orbits. We expect a reduction of differences near magnetic axis.

The second target is the particle which intersects the
separatrix. To handle the realistic first wall as the loss bound-
ary, we will switch the orbit-following method to the GC
method when the orbit intersects the separatrix of the plasma,
making use of our implementation in the OFMC framework.

The third target is to handle a magnetic perturbation. We
know a resonant condition is important for transport. The
resonant condition is evaluated by using orbit helicity [17].
By switching the orbit-following methods depending on the
orbit helicity, we would like to handle a non-axisymmetric
magnetic field such as toroidal field ripple or ELM-control
perturbation.
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Fig. 10. A plot for a “shallowly” trapped obit (a) and its expanded plot (b). The staying time is compared in the panel (c). The red makers are calculated
by the BT method and the blue markers/line are calculated by the GC method. The shaded region which consists of red markers in the panel (c)
is the contribution of a “larger” part of the inner leg in the BT method.
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