Plasma and Fusion Research
Volume 19, 1403026 (2024)
Regular Articles
- University of Tokyo, Kashiwa 277-0882, Japan
Abstract
Simulating waves in hot plasmas in configuration space is a difficult problem because of the non-local property of the plasma response, which makes the wave equation an integro-differential one. In this research, we conducted an axisymmetric hot plasma full wave simulation at the lower hybrid frequency range with the finite element method. Kinetic effects were introduced in the direction parallel to the magnetic field. We implemented the code so that it can handle an arbitrary velocity distribution function to introduce electron kinetics. An iterative method was utilized to introduce the non-local hot plasma contribution, which is more memory efficient than direct solving. The hot plasma perturbed current density was iteratively calculated in our scheme. For the present simulation, we used the plasma equilibrium obtained by the experiment with the TST-2 spherical tokamak, which is located at the University of Tokyo. The simulation with the realistic profiles successfully converged. The electron heating power deposition profile was estimated for the obtained electric field solutions.
Keywords
lower hybrid wave, full wave simulation, finite element method
Full Text
References
- [1] M. Brambilla and T. Krücken, Nucl. Fusion 28, 1813 (1988).
- [2] E.F. Jaeger, L.A. Berry, E. D’Azvedo, D.B. Batchelor et al., Phys. Plasmas 8, 1573 (2001).
- [3] S. Shiraiwa, S. Ide, S. Itoh, O. Mitarai et al., Phys. Rev. Lett. 92, 035001 (2004).
- [4] V.V. Dyachenko, O.N. Shcherbinin, E.Z. Gusakov, V.K. Gusev et al., Nucl. Fusion 55, 113001 (2015).
- [5] P.T. Bonoli, J. Ko, R. Parker, A.E. Schmidt et al., Phys. Plasmas 15, 0561117 (2008).
- [6] O. Meneghini, S. Shiraiwa and R. Parker, Phys. Plasmas 16, 090701 (2009).
- [7] D. Green and L. Berry, Comput. Phys. Commun. 185, 736 (2014).
- [8] P. Vallejos, T. Hellsten and T. Johnson, J. Phys. Conf. Ser. 1125, 012020 (2018).
- [9] J.E. Drummond, R.A. Gerwin and B.G. Springer, J. Nucl. Energy, Part C Plasma Phys. 2, 98 (1961).
- [10] T. Stix, Waves in Plasmas (American Institute of Physics, New York, 1992).
- [11] H. Walker and P. Ni, SIAM J. Numer. Anal. 49, 1715 (2011).
- [12] COMSOL Multiphysics, www.comsol.com, COMSOL AB, Stockholm, Sweden.
- [13] MATLAB, www.mathworks.com, The MathWorks Inc., Natick, MA, USA.
- [14] C. Lau, L.A. Berry, E.F. Jaeger and N. Bertelli, Plasma Phys. Control. Fusion 61, 045008 (2019).
- [15] T. Shinya, Y. Takase, S. Yajima, C. Moeller et al., Nucl. Fusion 57, 036006 (2017).
- [16] S. Yajima, Y. Takase, Y. Tajiri, Y. Takei et al., Nucl. Fusion 59, 066004 (2019).
- [17] Y. Ko, N. Tsujii, A. Ejiri, O. Watanabe et al., Nucl. Fusion 63, 126015 (2023).
- [18] L.L. Lao, H. St. John, R.D. Stambaugh, A.G. Kellman et al., Nucl. Fusion 25, 1611 (1985).
- [19] R.W. Harvey and M.G. McCoy, Proc. IAEA TCM on Advances in Sim. and Modelling of Thermonuclear Plasmas, 489 (1992).
- [20] A.P. Smirnov, R.W. Harvey and K. Kupfer, Bull. Am. Phys. Soc. 39, 1626 (1994).
- [21] P.T. Bonoli and E. Ott, Phys. Fluids 25, 359 (1982).