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Simulating waves in hot plasmas in configuration space is a difficult problem because of the non-local prop-
erty of the plasma response, which makes the wave equation an integro-differential one. In this research, we
conducted an axisymmetric hot plasma full wave simulation at the lower hybrid frequency range with the finite
element method. Kinetic effects were introduced in the direction parallel to the magnetic field. We implemented
the code so that it can handle an arbitrary velocity distribution function to introduce electron kinetics. An itera-
tive method was utilized to introduce the non-local hot plasma contribution, which is more memory efficient than
direct solving. The hot plasma perturbed current density was iteratively calculated in our scheme. For the present
simulation, we used the plasma equilibrium obtained by the experiment with the TST-2 spherical tokamak, which
is located at the University of Tokyo. The simulation with the realistic profiles successfully converged. The
electron heating power deposition profile was estimated for the obtained electric field solutions.
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1. Introduction
Accurate analyses of waves in plasmas need a wave

theory that takes into account the kinetic response of the
plasma, namely, the hot plasma model. The difficult point
of the hot plasma full wave simulations is that the plasma
response becomes non-local, expressed as an integral oper-
ator. This makes the wave equation to be solved an integro-
differential equation in configuration space. Because of
this characteristic, many of the previous full wave cal-
culations were based on the spectral representation [1, 2].
The plasma response becomes an algebraic product in
wavenumber space, making the implementation straight-
forward. This natural choice of simulation domain, how-
ever, requires the inversion of a large and dense matrix, and
the problem becomes computationally expensive. Also,
owing to the use of a global Fourier basis, it is inefficient
to model complex geometries such as the scrape off layer
and the antenna structure. In real experiments, interactions
of waves with plasmas in the scrape off layer and/or with
launchers could lead to deteriorated efficiency of heating
and current drive. The interactions need to be simulated
accurately. Full wave simulations in configuration space
with the finite element method (FEM) can efficiently han-
dle complicated structures with flexible meshing, such as
using finer meshing where more meshing is needed. The
FEM enables integrated modelling of the core plasma and
edge regions.
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Lower hybrid (LH) current drive has been conducted
in many tokamak experiments [3, 4]. Traditionally, ray
tracing has been used to analyze waves in the LH fre-
quency range. The technique solves the geometrical optics
equations assuming the Wenzel-Kramers-Brillouin (WKB)
approximation. It succeeded, for example, in explaining
experimentally obtained current drive efficiency [5]. How-
ever, coupling of LH waves from the antenna to the plasma
cannot be treated within the framework because the LH
wave has a low-density cutoff at ω = ωpe, where ω/2π is
the frequency of the LH wave and ωpe/2π is the electron
plasma frequency. Ray tracing must start somewhere in-
side the plasma where the LH waves are not evanescent. In
addition, when the LH waves approach the cutoff layer, the
wavelength and the plasma scale length become compara-
ble and the WKB approximation may break down. This
could be a problem in the multi-pass damping regime. Full
wave simulations can overcome these difficulties.

Previous FEM full wave simulations solved the
integro-differential wave equation with an iterative scheme
[6–8]. An iterative scheme consumes more time than a
direct solver, but can work with less computational re-
sources. In Ref. [6], two-dimensional finite element full
wave simulations of the LH waves were implemented. A
possible problem is that their scheme included division by
the electric field to calculate an effective dielectric. It may
be inaccurate at interferences where the electric field be-
comes almost zero. In this work, we present a different
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iterative scheme to simulate a two-dimensional LH wave
model. In our scheme, the hot plasma perturbed current
density that is consistent with the global wave simulation
is iteratively calculated.

The organization of this paper is as follows. Section 2
briefly describes the wave physics and the implementation
of our code. Section 3 shows the results from the homoge-
neous hot plasma simulation of LH waves and verifies the
present scheme. In Sec. 4, we simulate LH waves in a hot
plasma with a realistic plasma equilibrium and show the
results. Finally, in Sec. 5, we summarize our work.

2. Implementation of LH Wave Model
Assuming a time dependence ∝ eiωt, high frequency

waves are described by

∇ × (∇ × E) − ω
2

c2
E = −iωµ0j, (1)

where E is the electric field, j is the current density, c is the
speed of light in vacuum and µ0 is the vacuum permeabil-
ity. In wave analysis, we usually assume a linear plasma
response to waves:

j(r) = σ̂ · E. (2)

Here, σ̂ is the plasma conductivity. With Eq. (2), Eq. (1)
becomes the Helmholtz equation:

∇ × (∇ × E) − ω
2

c2
K̂ · E = 0, (3)

where

K̂ = 1 − iσ̂
ϵ0ω
, (4)

K̂ is the plasma dielectric and ϵ0 is the vacuum permittiv-
ity. The plasma dielectric or the plasma conductivity de-
termines wave propagation and damping. In general, the
plasma dielectric and the plasma conductivity are integral
operators. Therefore, the wave equations Eqs. (1) and (3)
become integro-differential equations. However, when we
consider a uniform plasma or assume local homogeneity,
the plasma dielectric and the plasma conductivity become
algebraic multiplication in the spectral domain.

The major linear damping mechanism for the LH
waves is electron Landau damping. The corresponding
term of the conductivity can be obtained as below by
following the derivation of [9]. Here, we consider one-
dimensional Vlasov equation of species s:

∂ fs

∂t
+ vz
∂ fs

∂z
+

qsE
ms

∂ fs

∂vz
= 0, (5)

where fs(z, vz, t) is a velocity distribution function, qs is a
charge, ms is a mass. Considering a perturbation f1s around
the equilibrium distribution f0s, Eq. (5) can be linearized to

d fs1

dt
=

(
∂

∂t
+ vz
∂

∂z

)
fs1 = −

qsE
ms

∂ fs0

∂vz
. (6)

Equation (6) can be solved by integrating along the unper-
turbed particle orbit:

fs1(z, vz, t) = −
qs

ms

∫ t

−∞
dt′E(z′, t′)

∂ fs0

∂vz
(z′, vz), (7)

where z − z′ = vz(t − t′). By taking the velocity moment,
the perturbed current density becomes

js1(z)=
∫ ∞

−∞
dz′

(
−qs

2

ms

∫ ∞

0
dτ

z − z′

τ2

∂ fs0

∂vz
eiωτ

)
E(z′).

(8)

To obtain a simplified expression of the conductivity oper-
ator in configuration space, we have changed the variables
of integration: (t′, vz)→ (t′, z′) and set τ = t − t′.

When we assume local homogeneity fs0(z′, vz) ≈
fs0(z, vz), the conductivity kernel is

σhot,s(z − z′) = −qs
2

ms

∫ ∞

0
dτ

z − z′

τ2

∂ fs0

∂vz
eiωτ. (9)

The real part of Eq. (9) corresponds to electron Landau
damping, and the imaginary part introduces a kinetic cor-
rection in wave propagation. Note that in Eq. (8), the cur-
rent density js1 is obtained as a convolution of the conduc-
tivity kernel and the electric field. With ω/2π = 200 MHz,
an electron density of 3×1017 m−3, and a velocity distribu-
tion function shown in Fig. 1, the conductivity kernel be-
comes as shown in Fig. 2. The velocity distribution func-
tion has two characteristic temperatures: the bulk tempera-
ture Tb = 15 eV and the tail temperature Tt = 20 keV. For
vz < 1.5vth,b, the distribution follows a Maxwellian distri-
bution with temperature Tb, and for vz > 1.5vth,b, the distri-
bution follows a Maxwellian distribution with temperature
Tt. Here, vth,b is the thermal velocity of bulk electrons, de-
fined as vth,b =

√
2Tb/me.

Fig. 1 Example of the electron velocity distribution function
with the electron density of 3 × 1017 m−3. It switches
from the Maxwellian with the bulk temperature of 15 eV
to the Maxwellian with the tail temperature of 20 keV.
The switching velocity is 1.5 times the bulk thermal ve-
locity in this case.
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Fig. 2 Example of the conductivity kernel expressed in Eq. (9).
The wave frequency of ω/2π = 200 MHz, and the elec-
tron velocity distribution function as shown in Fig. 1 are
assumed.

Our simulation used the plasma dielectric which in-
troduced electron Landau damping:

K̂ = Kcold,⊥ + K̂hot,∥

=


S iD 0
−iD S 0

0 0 0

 + ẑẑ(P + χ̂ELD), (10)

where S ,D and P are the Stix parameters as defined in [10],
and

χ̂ELD = −
iσ̂ELD

ϵ0ω
, (11)

σ̂ELD = ℜσ̂hot,e. (12)

Equation (10) is written in the magnetic coordinate system
where the magnetic field is in the ẑ direction. In the cylin-
drical coordinates (R, ϕ, Z), the plasma dielectric Kc can be
obtained by rotating the coordinates as

Kc = U−1 ·K · U, (13)

where

U =



√
1 − bR

2 −bRbϕ√
1 − bR

2

−bRbZ√
1 − bR

2

0
bZ√

1 − bR
2

−bϕ√
1 − bR

2

bR bϕ bZ


, (14)

bR, bϕ, bZ are the three components of the normalized mag-
netic field in the cylindrical coordinates:

B
|B| = bRR̂ + bϕϕ̂ + bZ Ẑ, (15)

and B is the magnetic field.
Here we introduce two expressions for the perturbed

current density:

jNL = ẑ
∫

dz′σELD(z − z′)Ez(z
′), (16)

jA = ẑσELD(k∥0)Ez, (17)

where k∥0 is a prescribed parallel wavenumber and
σhot,e(k∥) is the Fourier transform of σhot,e(z). jNL is the
fully non-local expression of the current density and jA is
the approximate expression of the current density with the
prescribed wave number. Also, we define δj as the differ-
ence between those two quantities:

δj = jNL − jA. (18)

Since Eqs. (1) and (3) are integro-differential equations, we
solved the wave equation iteratively as follows:

∇×
(
∇×E(N)

)
− ω

2

c2
(Kcold,⊥ +Khot,∥(k∥0))·E(N)

= −iωµ0I(N−1)

I(N−1) = A
(
δj(N−1), δj(N−2), . . . , δj(0)

)
,

(19)

where N is the iteration index, Khot,∥(k∥) is the Fourier
transform of the kernel Khot,∥(z), and A symbolizes the
operation of Anderson acceleration [11]. In order to im-
prove convergence, the non-local plasma effect was split
into the current density and the plasma dielectric. Only
the difference between the non-local expression and the
approximate expression was iterated. In addition, we uti-
lized Anderson acceleration, one of the vector extrapola-
tion methods. In our simulation, we used all the previ-
ously obtained solutions for Anderson acceleration to pre-
pare the next input I at every iteration. The RF module of
COMSOL Multiphysics [12] was used to solve the wave
equation in Eq. (19) with the FEM. By driving the RF
module and evaluating the perturbed current density with
MATLAB [13], we iteratively calculated wave propagation
and damping.

3. Homogeneous Plasma Simulations
and Results
First, we simulated LH waves in a homogeneous

plasma described in Fig. 3 to verify the iterative scheme
explained in Sec. 2. The electron density was 1 ×
1017 m−3, and the electron velocity distribution function
was Maxwellian with a temperature of 500 eV. The mag-
netic field with a magnitude of 0.04 T was tilted for 92◦

from the x̂ direction. This is to simulate the tilted mag-
netic field in a tokamak because of the poloidal field. The
length of the simulation domain in the ŷ direction was the
same as the wavelength of the LH waves in the ŷ direc-
tion, and the parallel wavenumber was scanned by chang-
ing the wavenumber in the ŷ direction ky at the boundary.
We added an artificial damping region to avoid the reflec-
tion of the wave at the edge.

The waves were excited with the electric field bound-
ary condition; the ŷ component of the electric field was
imposed as Ey = Eant sin(kyy), where Eant = 1 V/m. The
wave frequency was 200 MHz. The imposed wavenum-
ber in the ŷ direction ky was used as a prescribed paral-
lel wavenumber k∥0. In this tilted magnetic field geome-

1403026-3



Plasma and Fusion Research: Regular Articles Volume 19, 1403026 (2024)

Fig. 3 Settings for the homogeneous plasma simulation.

Fig. 4 Residual error for the homogeneous plasma simulation.

Fig. 5 Imaginary part of the wavenumber in the x̂ direction. The
values for the initial and converged solutions and the an-
alytical values are shown.

try, the parallel wavenumber of the analytical solution is
larger than ky, and the wavenumber correction was itera-
tively added to the solution.

Figure 4 shows the residual error for the homogeneous
plasma simulation. The residual error for all the simu-
lations became sufficiently small successfully. Figure 5
shows the imaginary part of the wavenumber in the x̂ direc-
tion. As expected, since the wavenumber upshift occurred,

the wave damping became stronger for the converged so-
lution than the initial solution. Also, as ky increased in
the chosen parameter range, the wave damping became
stronger. This agreed with the characteristic of Landau
damping. The converged solutions were almost the same
as the dispersion relation with wavenumber upshift. The
dispersion relation with the upshift was obtained by solv-
ing the dispersion relation with

k∥ = kx
Bx

B
+ ky

By
B
. (20)

The relation without the upshift was obtained in the same
way, but by neglecting the first term on the right-hand side
of Eq. (20).

We can roughly evaluate wave damping in a hot
plasma by approximating a wavenumber in the direction
parallel to the magnetic field with a toroidal wavenumber
(ky in this model) [14]. The parallel wavenumber, how-
ever, deviates from the toroidal wavenumber because of
the poloidal magnetic field. It is necessary to introduce this
difference into a model for quantitatively accurate simula-
tions. With the present iterative scheme, wave damping
can be calculated with more accuracy by using the integral
form of the hot plasma perturbed current density.

4. Axisymmetric Full Wave Simula-
tion and Results
TST-2 is a spherical tokamak located at the Univer-

sity of Tokyo. Its major radius is 0.36 m, its minor radius
is 0.23 m, and its toroidal field strength is < 0.3 T. Three
capacitively coupled combline antennas are installed at the
outer-midplane, at the top, and at the outer-off-midplane
[15–17]. The parallel refractive index is 5.5 for the outer-
midplane launch antenna, 4.9 for the top launch antenna,
and 13 for the outer-off-midplane launch antenna, respec-
tively. A source of 100 kW is available for each antenna
operating at a frequency of 200 MHz. Typically, the dis-
charge duration is about 80 ms. The electron density and
the electron temperature profiles are measured with Thom-
son scattering diagnostics, and the fitted curves at the flat
top of a discharge were used in the present simulation.

We conducted a two-dimensional axisymmetric full
wave simulation on a poloidal plane. Toroidal mode num-
ber, which is a conserved quantity in an axisymmetric sys-
tem, was nϕ = 20 and the wave frequency was ω/2π =
200 MHz. The bulk electron temperature and the elec-
tron density were assumed to be flux functions. The mag-
netic flux surfaces were obtained by EFIT [18] reconstruc-
tion and is shown in Fig. 6. The bulk electron tempera-
ture and the electron density profiles used in the simula-
tion are shown in Fig. 7. These are the equilibrium pro-
files obtained in the experiment with the TST-2 spherical
tokamak. We used the solutions from a Fokker-Planck
solver CQL3D [19] coupled with ray tracing code GEN-
RAY [20] for the electron velocity distribution function.
Figure 8 shows the used electron velocity distribution func-
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Fig. 6 Normalized toroidal flux obtained by EFIT. The simu-
lated area is encircled by the black solid lines.

Fig. 7 Bulk electron density and electron temperature profiles of
the LH start-up plasma in TST-2.

tion. This is obtained by integrating the GENRAY-CQL3D
simulation result over the perpendicular velocity. Outside
the last closed flux surface (the white region in Fig. 6), the
bulk electron temperature and the electron density were as-
sumed to be constant and the same as that on the last closed
flux surface. The waves were excited with the electric field
boundary condition; the toroidal component of the electric
field was imposed as follows on the outer edge around the
midplane.

Eϕ = 1 V/m (−0.5L < z < 0.5L), (21)

Fig. 8 Electron velocity distribution function used in the ax-
isymmetric simulation. This is obtained from the
GENRAY-CQL3D simulation result.

Fig. 9 Residual error for the axisymmetric simulation.

with L = 0.15 m. The other walls were assumed to be
perfect electric conductors. We initialized the iteration
with I(−1) = 0, that is, by considering only the approxi-
mate analytic damping. To calculate the approximate cur-
rent density, Eq. (17), we prescribed toroidal wavenumber
ktor = nϕ/R as an approximation for the parallel wavenum-
ber. The current density component corresponding to the
difference between σhot,e(k∥) and σhot,e(ktor) was iteratively
added to the model.

Figure 9 shows the residual error for the axisymmetric
simulation. The relative change in the total power deposi-
tion is shown in Fig. 10. Here P(N) is the electron heating
power densityℜ(jNL ·E∗)/2 integrated over the simulation
domain at the Nth iteration. Although the error of the total
power deposition was fluctuating, it still stayed at the order
of 10−4 after about 15 iterations. The converged solution
is shown in Fig. 11. Figure 12 shows the profile of the
heating power density averaged over the toroidal flux sur-
faces at the initial iteration and the 20th iteration, and the
result from a ray tracing code which only considers elec-
tron Landau damping. In the simulated plasma, the parallel
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Fig. 10 Relative change of the deposited power. The change
was less than 10−3 after 17 iterations.

Fig. 11 Converged electric field solution. The parallel compo-
nent is shown.

Fig. 12 Flux surface averaged electron heating power density
profile.

wavenumber of the waves experienced a downshift due to
the poloidal magnetic field [21]. The actual wave absorp-
tion must be weaker than the approximate analytic absorp-
tion (= initial absorption). Therefore, as the iteration went
on, the region where the wave was damped moved out-
ward. Note that the waves were launched from the low field
side and damped near the inner walls with a single pass in
the present simulation. The converged solution from the
full wave simulation showed absorption near the plasma
edge, and the characteristic matched that of the ray tracing
result. However, they showed a slightly different location
of absorption. Full wave effects such as diffraction are not
included in ray tracing. Also, it is non-trivial how to set
the initial wavenumber for each ray in ray tracing, which
affects the location of absorption. The discrepancy may
come from these reasons.

5. Summary
We have developed a new LH full wave simulation

code with the FEM scheme, utilizing the commercial FEM
solver. The new code is able to handle an arbitrary electron
velocity distribution function. The non-local hot plasma
contribution was implemented with an iterative scheme.
The electron Landau damping was introduced as a non-
local hot plasma response. In order to improve conver-
gence, we split the hot plasma effect into the plasma di-
electric and the current density, and made use of Ander-
son acceleration. With the newly developed code, firstly
we have conducted a homogeneous plasma simulation and
verified the code. Secondly, we have conducted an axisym-
metric simulation of the LH waves with the realistic elec-
tron bulk density and temperature profiles. The simulation
successfully converged. The electron heating power pro-
file was estimated for the converged electric field and the
result agreed well with that of the ray tracing code.

Interactions of waves with plasmas in the scrape off
layer and/or with launchers could be problematic for heat-
ing and current drive. It is necessary to consider the inter-
actions in real experiments and future reactors. The previ-
ous codes using spectral representation cannot efficiently
describe physics in such complex geometries. The FEM
enables integrated modelling of the antenna structure and
the hot core plasma, but the integral formulation of plasma
response must be employed. We introduced the integral
form perturbed current density in the present FEM model.
In the future extensions, the integrated modelling with our
FEM model will be tested. Also, the present model ne-
glects the kinetic propagation correction and handles only
the real part of the conductivity kernel. The full treatment
of the kinetic expressions remains as a future work.
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