Plasma and Fusion Research

Volume 19, 1403016 (2024)

Regular Articles

Effect of Edge Shear Flow on Radial Spreading of Ballooning Mode Turbulence
Ayumi TAKANO, Seiya NISHIMURA1), Makoto SASAKI2) and Yusuke KOSUGA3)
Department of Electric and Electronic Engineering, Hosei University, Koganei 184-8584, Japan
National Institute for Quantum Science and Technology, Naka 311-0193, Japan
College of Industrial Technology, Nihon University, Narashino 275-8575, Japan
Research Institute for Applied Mechanics, Kyushu University, Fukuoka 816-8580, Japan
(Received 3 October 2023 / Accepted 8 February 2024 / Published 20 March 2024)


Turbulent transport by the ballooning mode in tokamak plasmas with edge pedestals is simulated using a reduced set of two-fluid equations. In the absence of the equilibrium poloidal flow, global heat transport by the secondary nonlinear evolution of the resistive ballooning mode turbulence is observed. By examining the effect of the edge shear flow, the global heat transport is suppressed to be almost half, if the edge shear flow is strong enough. A detailed analysis on the radial profile and the poloidal spectrum of the heat flux is newly performed. It is revealed that such confinement improvement is caused by the suppression of the formation of streamer structures that lead to the strong convective heat transport.


tokamak plasma, resistive ballooning mode, nonlinear evolution, turbulence spreading, shear flow

DOI: 10.1585/pfr.19.1403016


  • [1] G.T.A. Huijsmans, C.S. Chang, N. Ferraro, L. Sugiyama, F. Waelbroeck, X.Q. Xu, A. Loarte and S. Futatani, Phys. Plasmas 22, 021805 (2015).
  • [2] J. Cheng, J.Q. Dong, K. Itoh, S.-I. Itoh, L.W. Yan, J.Q. Xu, M. Jiang, Z.H. Huang, K.J. Zhao, Z.B. Shi, W.L. Zhong, S. Inagaki, T. Kobayashi, K. Ida, Y. Kosuga, M. Sasaki, M.K. Han, Z.X. Wang, M. Xu, Y. Xu and HL-2A team, Nucl. Fusion 60, 046021 (2020).
  • [3] M. Furukawa and S. Tokuda, Phys. Rev. Lett. 94, 175001 (2005).
  • [4] N. Aiba, C. Giroud, M. Honda, E. Delabie, S. Saarelma, L. Frassinetti, I. Lupelli, F.J. Casson, S. Pamela, H. Urano, C.F. Maggi and JET Contributors, Nucl. Fusion 57, 126001 (2017).
  • [5] C.K. Sun, X.Q. Xu, C.H. Ma and B. Li, Phys. Plasmas 25, 082106 (2018).
  • [6] J.W. Connor, R.J. Hastie, H.R. Wilson and R.L. Miller, Phys. Plasmas 5, 2687 (1998).
  • [7] X.Q. Xu, B.D. Dudson, P.B. Snyder, M.V. Umansky, H.R. Wilson and T. Casper, Nucl. Fusion 51, 103040 (2011).
  • [8] P.W. Xi, X.Q. Xu, X.G. Wang and T.Y. Xia, Phys. Plasmas 19, 092503 (2012).
  • [9] H. Seto, X.Q. Xu, B.D. Dudson and M. Yagi, Phys. Plasmas 26, 052507 (2019).
  • [10] P. Beyer, S. Benkadda, G.F. Chaudier, X. Garbet, Ph. Ghendrih and Y. Sarazin, Plasma Phys. Control. Fusion 49, 507 (2007).
  • [11] A. Thyagaraja, M. Valovič and P.J. Knight, Phys. Plasmas 17, 042507 (2010).
  • [12] M. Leconte, P. Beyer, X. Garbet and S. Benkadda, Phys. Rev. Lett. 102, 045006 (2009).
  • [13] S. Nishimura and M. Yagi, Plasma Fusion Res. 6, 2403119 (2011).
  • [14] M. Bécoulet, F. Orain, G.T.A. Huijsmans, S. Pamela, P. Cahyna, M. Hoelzl, X. Garbet, E. Franck, E. Sonnendrücker, G. Dif-Pradalier, C. Passeron, G. Latu, J. Morales, E. Nardon, A. Fil, B. Nkonga, A. Ratnani and V. Grandgirard, Phys. Rev. Lett. 113, 115001 (2014).
  • [15] D. Chandra, A. Thyagaraja, A. Sen and P. Kaw, Nucl. Fusion 57, 076001 (2017).
  • [16] X. Garbet, L. Laurent, A. Samain and J. Chinardet, Nucl. Fusion 34, 963 (1994).
  • [17] F. Hariri, V. Naulin, J.J. Rasmussen, G.S. Xu and N. Yan, Phys. Plasmas 23, 052512 (2016).
  • [18] Y. Kosuga, S.-I. Itoh, P.H. Diamond and K. Itoh, Phys. Rev. E 95, 031203(R) (2017).
  • [19] R.D. Hazeltine, M. Kotschenreuther and P.J. Morrison, Phys. Fluids 28, 2466 (1985).