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Turbulent transport by the ballooning mode in tokamak plasmas with edge pedestals is simulated using a
reduced set of two-fluid equations. In the absence of the equilibrium poloidal flow, global heat transport by
the secondary nonlinear evolution of the resistive ballooning mode turbulence is observed. By examining the
effect of the edge shear flow, the global heat transport is suppressed to be almost half, if the edge shear flow
is strong enough. A detailed analysis on the radial profile and the poloidal spectrum of the heat flux is newly
performed. It is revealed that such confinement improvement is caused by the suppression of the formation of
streamer structures that lead to the strong convective heat transport.
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1. Introduction
For magnetically confinement fusion plasmas such as

tokamak plasmas, it is an important issue to understand and
control magnetohydrodynamic (MHD) turbulence. In par-
ticular, the edge localized mode (ELM) due to the balloon-
ing mode has been observed in the edge region of toka-
maks, causing partial collapse of the pressure profile and
large heat load on the divertor [1]. In addition, a recent
experimental observation shows that the radially elongated
flow, i.e. the streamer, generated by the ballooning mode
turbulence plays an important role in the triggering of the
type-III ELM [2].

Theoretical and numerical studies on the ballooning
mode are mainly classified into the following four cate-
gories. First, the stability analysis of the ballooning mode
has been conducted taking into account realistic poloidal
geometries and various equilibrium profiles [3–5]. In this
line of research, it has been considered that coupling of the
peeling mode, driven by the edge bootstrap current, and
the ballooning mode is essential for the ELM accompany-
ing the largest collapse, so-called type-I ELM [6]. Second,
nonlinear simulations of the ballooning mode have been
performed to understand nonlinear evolution and satura-
tion mechanisms of the ballooning mode turbulence [7–9].
Third, in order to reproduce the repetitive burst transport
due to the ELM, nonlinear simulations of the ballooning
mode turbulence in the presence of the heat source have
been performed [10, 11]. Fourth, associated with the inter-
action between the ballooning mode turbulence and mag-
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netic islands, studies have been carried out to examine the
physical mechanism of how bursty heat transport by the
ELM is mitigated or suppressed by the so-called resonant
magnetic perturbation (RMP) [12–15].

In this study, we focus on the nonlinear evolution of
the resistive ballooning mode turbulence in the absence
of the heat source and the peeling mode. In the preced-
ing works, it has been shown that the linear instability of
the ballooning mode occurs locally, whereas the balloon-
ing mode turbulence spreads globally in the radial direc-
tion [7–9]. Originally, the turbulence spreading in the ra-
dial direction has been studied in detail in terms of the drift
wave turbulence [16–18]. In the turbulence spreading, the
pressure gradient and the turbulence amplitude move ra-
dially inward are simultaneously observed, which is also
called the front propagation. However, for the ballooning
mode turbulence, the detailed mechanism of the turbulence
spreading is not fully understood. In particular, it has been
pointed out that the loss of the stored energy due to the
ballooning mode turbulence is suppressed to a low level,
when the edge poloidal flow exists [8, 9]. In order to clar-
ify such a reduction mechanism, we newly introduce an
analyzing method of the radial profile and the mode num-
ber spectrum of the heat flux accompanying the ballooning
mode turbulence.

Remainder of this paper is organized as follows. In
Sec. 2, the reduced two-fluid model of tokamak plasmas
is introduced. We show a law of the conservation of en-
ergy and derive a time evolution equation of the stored
energy. In addition, parameters and equilibrium profiles
used in nonlinear simulations are also shown. The nonlin-
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ear simulation results and analyses on them are shown in
Sec. 3. The reduction of the stored energy loss due to the
edge poloidal shear flow is observed. The heat flux due to
the ballooning mode turbulence is analyzed, and the reduc-
tion of the convective heat flux by the shear flow is found
to be essential. Then, time evolution of the radial profile
and the mode number spectrum of the convective heat flux
are analyzed. It is concluded that the edge shear flow af-
fects the nonlinear characteristics of the ballooning mode
turbulence, which avoids both the radial turbulence spread-
ing and the global heat transport. Section 4 is devoted for
a summary.

2. Simulation Model
2.1 Reduced two-fluid model

Our simulation model is based on the conventional
Hazeltine’s reduced two-fluid model [19], where tokamak
plasmas with large aspect ratios are modeled by cylindrical
plasmas with effective toroidal curvatures. In the model,
a quasi-neutral condition between ion and electron densi-
ties is considered, and the cold ion approximation is used.
For simplicity, we neglect the ion diamagnetic drift, the
ion parallel velocity, and the electron inertia. The vorticity
equation, the generalized Ohm’s law, and the pressure evo-
lution equation (the electron continuity equation for con-
stant temperature) are given by

dU
dt
= ∇∥ j∥ −

[
x, p

]
+ µ∇2

⊥U, (1)

∂A∥
∂t
= −∇∥(ϕ − δp) − η∥( j∥ − j∥0), (2)

dp
dt
= 2δβ∇∥ j∥ + 2β[x, ϕ − δp] + χ∇2

⊥p, (3)

respectively. The definition of U and the Ampère’s law are
given by

U = ∇2
⊥ϕ, (4)

j∥ = −∇2
⊥A∥, (5)

respectively. The operators are defined by

d
dt
=
∂

∂t
+ [ϕ, ], (6)

∇∥ =
∂

∂z
− [A∥, ], (7)

[ f , g] = ẑ · ∇⊥ f × ∇⊥g, (8)

∇⊥ = r̂
∂

∂r
+ θ̂

1
r
∂

∂θ
, (9)

where f and g are arbitrary variables.
In the cylindrical coordinates (r, θ, z), the coordinate

variables {r, θ, z} are the minor radial position, the poloidal
phase angle, and the toroidal position, respectively, and
{r̂, θ̂, ẑ} are unit vectors. The variables {U, ϕ, A∥, j∥, p} de-
note the vorticity, the electrostatic potential, the parallel
component of the vector potential, the parallel current, and

the electron pressure, respectively, and j∥0 is the equilib-
rium parallel current. The transport coefficient {µ, η∥, χ}
denote the perpendicular momentum diffusivity, the par-
allel resistivity, and the perpendicular thermal diffusivity,
respectively. The major radial position measured from the
plasma center is defined by x = r cos θ, and the effective
curvature of the toroidal magnetic field field is given by
κ0 = −∇⊥x.

The time and length are normalized as t/τA → t,
r/a → r, and z/R0 → z, where τA = R0/vA, vA is the
Alfvén velocity, a is the minor radius, and R0 is the ma-
jor radius. The normalized parameters are defined as fol-
lows: β is the ratio between the kinetic pressure and the
magnetic pressure measured at the plasma center, and δ
is the ion inertia length normalized by 2a. The other vari-
ables and operators are normalized as follows: a∇⊥ → ∇⊥,
R0∇∥ → ∇∥, R0κ0 → κ0, (cτA/a2B0)ϕ → ϕ, A∥/ϵaB0 →
A∥, (4πR0/cB0) j∥ → j∥, (8π/ϵB2

0)p → p, (τA/a2)µ → µ,
(c2τA/4πa2)η∥ → η∥, and (τA/a2)χ→ χ, where c is the ve-
locity of light, ϵ = a/R0 is the inverse aspect ratio of torus,
and B0 is the representative magnitude of the toroidal mag-
netic field.

2.2 Energy conservation and heat flux
In the cylindrical coordinates, we assume that an ar-

bitrary variable f (r, θ, z, t) can be expanded into complex
Fourier series as

f (r, θ, z, t) = f0(r) + f̃ (r, θ, z, t)

= f0(r) +
∑
m,n

f̃m,n(r, t) exp [i(mθ − nz)],

(10)

where {m, n} are the poloidal and toroidal mode numbers,
respectively. Hereafter, variables with the subscript 0 de-
note equilibrium quantities, and those with the tilde denote
perturbation quantities.

In our preliminary study, it has been observed that
numerical instability occurs around r = 0 when a finite
value of δ is considered. In order to avoid such insta-
bility, we limit the domain of the r as r0 ≤ r ≤ 1,
where r0 = 0.1 is used in this study. The boundary
conditions for the perturbation amplitudes are given such
that f̃m,n(r0, t) = f̃m,n(1, t) = 0 for (m, n) , (0, 0) and
∂r f̃0,0|r=r0 = f̃0,0(1, t) = 0.

Then, we write down Eqs. (1)-(3) for the (m, n) com-
ponent of the complex Fourier amplitude as

∂

∂t
Ũm,n = − ikθϕ

′
0Ũm,n + ikθU

′
0ϕ̃m,n −

[
ϕ̃, Ũ

]
m,n

+ ik∥ j̃∥m,n + ikθ j′∥0Ã∥m,n −
[
Ã∥, j̃∥

]
m,n

− [
x, p̃

]
m,n + µ

(
∇2
⊥Ũ

)
m,n
, (11)

∂

∂t
Ã∥m,n = − ik∥ϕ̃m,n − ikθϕ

′
0Ã∥m,n +

[
Ã∥, ϕ̃

]
m,n

+ iδk∥ p̃m,n + iδkθp
′
0Ã∥m,n − δ

[
Ã∥, p̃

]
m,n

− η∥ j̃∥m,n, (12)
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∂

∂t
p̃m,n = − ikθϕ

′
0 p̃m,n + ikθp

′
0ϕ̃m,n −

[
ϕ̃, p̃

]
m,n

+ 2δβ
(
ik∥ j̃∥m,n + ikθ j′∥0Ã∥m,n −

[
Ã∥, j̃∥

]
m,n

)
+ 2β

[
x, ϕ̃ − δ p̃

]
m,n
+ χ

(
∇2
⊥ p̃

)
m,n
, (13)

where kθ = m/r, k∥ = m/q− n, q is the safety factor (1/q =
−(1/r)(dA∥0/dr) in our normalization), the prime indicate
the radial derivative, and (∇2

⊥ f̃ )m,n = (1/r)∂r(r∂r f̃m,n) −
k2
θ f̃m,n.

The energy conservation law of Eqs. (1)-(3) in terms
of the complex Fourier amplitude is given by

dE
dt
=L, (14)

with

E = Eϕ + EA∥ + Ep, (15)

L = S ϕ′0 + S j′∥0
+ S p′0

+ S µ + S η∥ + S χ, (16)

where the components of each perturbation energy are de-
fined by

Eϕ =
∑
m,n

Em,n
ϕ =

∑
m,n

1
2

∫ 1

r0

∣∣∣∣(∇⊥ϕ̃)m,n

∣∣∣∣2 rdr, (17)

EA∥ =
∑
m,n

Em,n
A∥
=

∑
m,n

1
2

∫ 1

r0

∣∣∣∣(∇⊥Ã∥
)

m,n

∣∣∣∣2 rdr, (18)

Ep =
∑
m,n

Em,n
p =

∑
m,n

1
4β

∫ 1

r0

∣∣∣p̃m,n

∣∣∣2 rdr, (19)

with |(∇⊥ f̃ )m,n|2 = |∂ f̃m,n/∂r|2 + k2
θ | f̃m,n|2 for arbitrary f̃ .

In addition, {S ϕ′0 , S j′∥0
, S p′0
} are the energy sources associ-

ated with radial gradients of the the electrostatic potential,
the parallel current, and the pressure, respectively, involved
in the linear terms in Eqs. (11)-(13), and {S µ, S η∥ , S χ} are
the energy sinks associated with each transport coefficient.
Note that contributions of various nonlinear terms and
quasilinear terms associated with the toroidal curvature are
cancelled out each other in the final form of the energy con-
servation law. For later use, we define the pressure energy
perturbation summed over n as

Em
p =

∑
n

Em,n
p . (20)

In this study, the stored energy is defined by

W =4π2
∫ r

r0

(
p0 + p̃0,0

)
rdr = W0 − ∆W, (21)

where W0 = 4π2
∫ r

r0
p0rdr is the initial stored energy and

∆W = −4π2
∫ r

r0
p̃0,0rdr is the loss of the stored energy. In

order to derive the time evolution of the loss of the stored
energy, we write down the (m, n) = (0, 0) component of
Eq. (13) as

∂

∂t
p̃0,0 = −

[
ϕ̃, p̃

]
0,0
− 2δβ

[
Ã∥, j̃∥

]
0,0

+ 2β
[
x, ϕ̃ − δ p̃

]
0,0
+ χ

(
∇2
⊥ p̃

)
0,0
. (22)

Operating
∫ r

r0
dr r to Eq. (22) gives

− 1
4π2

∂

∂t
∆W = hconv + hEM + hcurv + hdiff, (23)

with

hconv = −
∫ r

r0

[
ϕ̃, p̃

]
0,0

rdr, (24)

hEM = −2δβ
∫ r

r0

[
Ã∥, j̃∥

]
0,0

rdr, (25)

hcurv = 2β
∫ r

r0

[
x, ϕ̃ − δ p̃

]
0,0

rdr, (26)

hdiff = χ

∫ r

r0

(
∇2
⊥ p̃

)
0,0

rdr, (27)

where {hconv, hEM, hcurv, hdiff} are the heat fluxes associated
with the convection, the electromagnetic perturbation, the
curvature, and the thermal diffusion, respectively.

For later use, we also derive an expression for ex-
tracting the modes that drive the convective heat transport.
First,

[
ϕ̃, p̃

]
0,0

in Eq. (24) can be rewritten as

[
ϕ̃, p̃

]
0,0
= −

∑
m,n

ikθ
∂

∂r

(
ϕ̃m,n p̃∗m,n

)
, (28)

where p̃−m,−n = p̃∗m,n is used, and f ∗ is the complex con-
jugate of arbitrary f . Substituting Eq. (28) into Eq. (24)
gives

hconv =
∑
m,n

hm,n
conv, (29)

with

hm,n
conv =imϕ̃m,n p̃∗m,n. (30)

Summing over n and considering the complex conjugation
property, the convective heat transport is also separated as

hconv =
∑
m>0

Hm
conv, (31)

with

Hm
conv =

∑
n

(
hm,n

conv + h−m,−n
conv

)
=

∑
n

2Re
(
imϕ̃m,n p̃∗m,n

)
. (32)

2.3 Simulation condition
In this study, the equilibrium profiles are given by

q = 2 + 2r2, (33)

p0 =
β

2ϵ

(
1 − r2

) [
1 − tanh

( r − rs

d

)]
, (34)

ϕ0 = αδp0, (35)

where {rs, d, α} are arbitrary. The profile of j∥0 is deter-
mined by the cylindrical MHD equilibrium in our normal-
ization:

jθBz − ϵ2 j∥0Bθ =
ϵ

2
p′0, (36)
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Fig. 1 Radial profile of the equilibrium pressure p0 and safety
factor q.

Fig. 2 Radial profile of the equilibrium parallel current j∥0.

where jθ = −(dBz/dr), j∥0 = (1/r)d(rBθ)/dr, and Bz =

qBθ/r. Then, the determination of j∥0 is reduced to solve
the following differential equation for B2

θ :

dB2
θ

dr
= − 2

(q2/r2) + ϵ2

(
ϵp′0
2
+ f B2

θ

)
, (37)

f =
d
dr

(
q2

2r2

)
+
ϵ2

r
. (38)

In the following simulations, the parameters are cho-
sen such that β = 0.01, δ = 0.04, ϵ = 0.3, µ = 10−5,
η∥ = 10−5, χ = 10−5, rs = 0.85, r0 = 0.1, d = 0.05.
The time step is ∆t = 0.01, and the radial resolution is
∆r = (1 − r0)/256, and Fourier modes with −40 ≤ m ≤ 40
and −20 ≤ n ≤ 20 are solved.

Figure 1 shows the radial profile of the equilibrium
pressure and the safety factor. There exists a sharp radial
gradient of the pressure around r = 0.85, where the re-
sistive ballooning mode is initially destabilized. Similarly,
Fig. 2 shows the radial profile of the equilibrium parallel
current, which is the solution of the cylindrical MHD equi-
librium. The poloidal E × B flow velocity is given by

vE = vE0 + ṽE0,0, (39)

where vE0 = ϕ
′
0 is the equilibrium poloidal E × B flow

velocity and ṽE0,0 = ϕ̃
′
0,0 represents the modification of the

Fig. 3 Radial profile of the equilibrium poloidal flow velocity
vE0 for α = 0, 0.2, 0.4, 0.6, 0.8, and 1.

poloidal flow velocity due to nonlinear effects. In order to
study the effect of the edge shear flow on the evolution of
the ballooning mode turbulence, we conduct the parameter
survey for different values of α in Eq. (35). Figure 3 shows
the radial profile of the equilibrium poloidal E × B flow
velocity. It is observed that sharp radial gradients of the
flow velocity are formed in the edge region. In addition,
the absolute value of the velocity for the case with α = 1
agrees with that of the electron diamagnetic drift velocity
defined by v∗ = −δp′0.

3. Simulation Results and Analyses
In the following, simulation results of the nonlinear

evolution of the resistive ballooning mode turbulence are
shown, and effects of the edge shear flow on the radial tur-
bulence spreading are analyzed in detail.

Figure 4 shows the color contours of the pressure per-
turbation in the poloidal cross section in the absence of the
edge shear flow (α = 0) at different times, where Z is the
vertical position normalized by the minor radius. The bal-
looning mode with m ∼ 30 is in the linear growth phase at
t = 100 (Fig. 4 (i)), and the mode is excited near the radial
position of the peak of the equilibrium pressure gradient
r = 0.83. It is observed that the mode is in the nonlinear
evolution phase at t = 150 (Fig. 4 (ii)), where the balloon-
ing structure collapses due to the energy cascade of the un-
stable modes and the transition to a turbulent state with a
complex structure. In more nonlinearly developed phases
at t = 400 and t = 600 (Figs. 4 (iii) and 4 (iv), respectively),
the secondary turbulence spreading occurs in the radial di-
rection, where intermediate-scale structures with m ∼ 10
modes are formed.

Here, the intermediate-scale structures with m ∼ 10
observed in Figs. 4 (iii) and 4 (iv) are considered to be so-
called streamer structures. The group of the streamers has
the ballooning structure, where multiple poloidal/toroidal
modes are combined. It is confirmed that m ∼ 10 modes in
the initial growing phase as Fig. 4 (i) are marginally stable.
Therefore, the development of the streamers is a nonlinear
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Fig. 4 Color contours of the pressure perturbation in the
poloidal cross section in the absence of the edge shear
flow (α = 0 in Fig. 3) at (i) t = 100, (ii) t = 150, (iii)
t = 400, and (iv) t = 600.

Fig. 5 Color contours of the pressure perturbation in the
poloidal cross section in the presence of the strong edge
shear flow (α = 1 in Fig. 3) at (i) t = 100, (ii) t = 150,
(iii) t = 400, and (iv) t = 600.

phenomenon and occurs simultaneously with the deforma-
tion of the pressure profile. Since the streamer structure
is less susceptible to the diffusion damping compared with
the micromodes, its radially extending structure is suitable
for driving global heat transport. As shown below, it is
considered that the system spontaneously generates such
structures for efficient heat transport.

Figure 5 shows the color contours of the pressure per-
turbation in the poloidal cross section in the presence of
the strong edge shear flow (α = 1) at different times. Even

Fig. 6 Radial profiles of the pressure p0 + p̃0,0 for α = 0 and
α = 1.

Fig. 7 Radial profiles of the poloidal flow velocity vE = vE0 +

ṽE0,0 for α = 0 and α = 1, and vE0 for α = 1.

in the presence of the strong edge shear flow, similar to
Fig. 4, the ballooning structure at t = 100 (Fig. 5 (i)) and
the transition to the turbulent state at t = 150 (Fig. 5 (ii))
are also observed. On the other hand, in more nonlinearly
developed phases at t = 400 and t = 600 (Figs. 5 (iii) and
5 (iv), respectively), the secondary turbulence spreading as
observed in Fig. 4 becomes very weak, and the fluctuations
are mainly localized in the edge region. Therefore, in our
parameter regime, it is found that the edge shear flow does
not strongly affect the transition process of the ballooning
mode to the turbulent state, but tends to suppress the radial
spreading of the turbulence.

Figure 6 shows the radial profile of the pressure p0 +

p̃0,0 at t = 600. Compared with the initial state p0, it is ob-
served that the pressure decreases in the inner region and
increases in the outer region, caused by the global turbu-
lent transport. Comparing the cases of α = 0 and α = 1,
such global transport tends to be reduced by the edge shear
flow, which is caused by the suppression of the radial tur-
bulence spreading. Corresponding to Fig. 6, Fig. 7 shows
the radial profile of the poloidal flow velocity vE0 + ṽE0,0

at t = 600. For the case with α = 0, the poloidal flow is
formed even in the core region, which is caused by the ra-
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dial turbulence spreading. On the other hand, for the case
with α = 1, deformation of the poloidal flow profile is sup-
pressed. Therefore, the strong edge shear flow is found to
have reduction effects of the radially global heat and mo-
mentum transport.

Figure 8 shows the time evolution of the energy loss
rate for different values of α. Here, from Eq. (21), the en-
ergy loss rate is defined as follows:

ηloss =
∆W
W0

∣∣∣∣∣
r=0.83

, (40)

where r = 0.83 is the radial position of the peak of the
equilibrium pressure gradient. Since the linear growth rate
of the ballooning mode is high compared with the shear-
ing rate of the edge shear flow in our parameter regime,
the energy loss rate is not sensitive to the value of α in the
linear regime 0 ≤ t ≲ 150. In the first nonlinear satura-
tion phase, 150 ≲ t ≲ 250, the energy loss rate weakly
decreases as the value of α increases. In the subsequent
nonlinear evolution phase, 250 ≲ t, the energy loss rate
strongly depends on the value of α. In particular, the en-
ergy loss rate for α = 1 is roughly half of that for α = 0. In
addition, from comparison of the small α cases (δ = 0.04)
with the δ = 0 case (v∗ = 0 and vE0 = 0), it is observed
that the electron diamagnetic effect strongly enhances the
energy loss in the nonlinear phase. This implies that the
electron diamagnetic effect plays an important role in the
formation of the streamers.

Here, we consider the suppression mechanism of the
streamer structures by the edge shear flow. The time re-
quired for the streamer to extend globally in the radial di-
rection (for example, at least, radial length 0.5) is defined
as the characteristic time of the streamer τstream. From
Figs. 4 (iii) and 4 (iv), we can estimate τstream ∼ 200. If the
shear flow sufficiently twists the streamer in the poloidal
direction during the time that the streamer extends in the
radial direction, it is considered that the development of the
streamer can be suppressed. The length of the twist in the
poloidal direction is r∆θ, where ∆θ is the typical twist an-

Fig. 8 Time evolution of the energy loss rate for α = 0, 0.2,
0.4, 0.6, 0.8, and 1. The case with δ = 0 is also shown
as a reference.

gle. Considering that ∆θ is the angle that sufficiently twists
the m ∼ 10 mode, that is, the angle that mixes the phases of
the neighboring streamers, gives ∆θ = 2π/m ∼ π/5. There-
fore, the characteristic time of twisting due to the shear
flow is calculated as follows:

τE0 =
r∆θ
|vE0|

∣∣∣∣∣
r=0.83

∼ 100
α
. (41)

On the time scales longer than τE0, it becomes difficult to
produce structures cross the edge shear flow. This is con-
sistent the simulation results, Figs. 4, 5 and 8, that α ∼ 0.5
is sufficient to prevent the formation of the streamer struc-
tures. Therefore, it is found that the strong edge shear flow
suppresses the development of the streamer structures in
the ballooning mode turbulence.

In order to understand the detailed physical mecha-
nism of the reduction of the energy loss rate due to the edge
shear flow in Fig. 8, we separate the heat flux into contribu-
tions of the convection, the electromagnetic perturbation,
the curvature, and the thermal diffusion as shown in the
right-hand side of Eq. (23). Figure 9 shows the radial pro-
files of the decomposed heat fluxes. In the absence of the
edge shear flow (Fig. 9 (a)), it is observed that the contri-
bution of the convection is dominant. This result indicates
that the radial turbulence spreading is mainly caused by the
convective energy transport. On the other hand, the contri-
bution of the convection becomes drastically small in the
presence of the strong edge shear flow (Fig. 9 (b)), which

Fig. 9 Radial profiles of the heat fluxes associated with the con-
vection hconv, the electromagnetic perturbation hEM, the
curvature hcurv, and the thermal diffusion hdiff for (a)
α = 0 and (b) α = 1 at t = 400.
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Fig. 10 Color contours of the convective heat flux spectrum
Hm

conv(r) in r-m space for α = 0 at (i) t = 150 and (ii)
t = 400.

results in the reduction of the energy loss in Fig. 8. Com-
paring Figs. 9 (a) and 9 (b), it is observed that the contribu-
tion of the electromagnetic perturbation is negligible, and
the contribution of the thermal diffusion tends to partially
cancel out that of the convection.

Next, in order to decompose the convective heat flux
into poloidal mode components, we use Hm

conv(r) defined
by Eq. (32). Figure 10 shows the color contours of Hm

conv(r)
in r-m space in the absence of the edge shear flow. In the
beginning of the nonlinear phase at t = 150 (Fig. 10 (i)), it
is observed that various modes contribute to the convective
heat flux. On the other hand, in the phase of the radial
turbulence spreading at t = 400 (Fig. 10 (ii)), contributions
of the low-m modes are important, which is associated with
the streamer structures in Fig. 4. Similarly, Fig. 11 shows
the color contours of Hm

conv(r) in r-m space in the presence
of the strong edge shear flow. Comparing Figs. 10 and 11,
it is found that the convective heat flux spectrum is almost
the same in both cases at t = 150, but the contributions
of the low-m modes are less important in the case with the
strong edge shear flow.

The results in Figs. 10 and 11 imply that the strong
edge shear flow tends to avoid the inverse energy cascade
in the mode number space. In order to verify this mecha-
nism, we use Em

p defined by Eq. (20). Figure 12 shows the
poloidal mode number spectrum of the pressure perturba-
tion energy in the phase of the radial turbulence spread-
ing at t = 400. In the absence of the edge shear flow
(Fig. 12 (a)), the peak in the range of 10 ≲ |m| ≲ 20 is
observed, which corresponds to the streamer structures in
Fig. 4. On the other hand, such prominent peak in the

Fig. 11 Color contours of the convective heat flux spectrum
Hm

conv(r) in r-m space for α = 1 at (i) t = 150 and (ii)
t = 400.

Fig. 12 Poloidal mode number spectrum of the pressure pertur-
bation energy Em

p for (a) α = 0 and (b) α = 1 at t = 400.

poloidal mode number space is absent in the case with the
strong edge shear flow (Fig. 12 (b)).

4. Summary
In this study, we perform nonlinear simulations of
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the ballooning mode turbulence using a reduced two-fluid
model, and investigate how the edge shear flow affects the
nonlinear evolution of the ballooning mode turbulence. In
particular, from the perspective of the radial spreading of
ballooning mode turbulence, the loss of the stored energy
due to the ballooning mode turbulence is analyzed in de-
tail. Based on the evolution equation of the change of the
stored energy, a method to analyze the heat flux in the ra-
dial and mode number space is newly developed. Then, it
becomes possible to quantitatively investigate the physical
mechanism behind the relationship between the turbulence
spreading and the edge shear flow.

In our simulation parameters, for the case without the
equilibrium edge shear flow, the ballooning mode turbu-
lence leads to the global heat transport by forming the sec-
ondary streamer structures. On the other hand, it is ob-
served that, when the edge shear flow becomes stronger,
such structures are not prominent and the global heat trans-
port is suppressed. More specifically, it is found that the
loss of stored energy roughly becomes half when the edge
shear flow is as strong as the diamagnetic drift. Decom-
posing the heat flux into its components reveals that the
convective heat transport is responsible for the global heat
transport. Furthermore, by extracting the poloidal mode
components that drive the convective heat transport, it is
confirmed that global heat transport is mainly caused by
the streamer structures. By comparing the time scale for
the development of the streamer structures and the charac-
teristic time scale of the edge shear flow, it is newly re-
vealed that there is a physical mechanism that the edge
shear flow prevents the formation of the streamer struc-
tures.

In the following, we compare our simulation results
with the preceding works. It is shown in Ref. [8] that the
radial spreading of the ballooning mode turbulence is sup-
pressed by the edge shear flow. In this study, by analyz-
ing the heat flux in the radial direction and mode number
space, it is newly revealed that the edge shear flow sup-
presses not only the local convective heat transport but the
global convective heat transport by affecting the secondary
nonlinear evolution of the ballooning mode turbulence. In
addition, the interaction between the spontaneously gener-
ated zonal flow and the ballooning mode turbulence in the
absence of the equilibrium edge shear flow is investigated
in Ref. [9]. Our simulation results imply that the formation
of the zonal flow and its influence on the ballooning mode
turbulence are less important in the presence of the strong
equilibrium edge shear flow.

In this study, we neglect the ion diamagnetic drift, the
parallel velocity, and the parallel thermal transport for sim-
plicity, but those may affect the physics of the turbulence
spreading. It is also important to consider a more realis-
tic poloidal cross-section shape for better understanding of
the ballooning mode turbulence in the advanced tokamaks.
In our simulations, we use the relatively high resistivity.
Therefore, it is also important to check how the choice of

the resistivity affects the physical mechanism of the effect
of the edge shear flow on the radial spreading of the bal-
looning mode turbulence. Those are left as future works.
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