Plasma and Fusion Research
Volume 19, 1201035 (2024)
Rapid Communications
- 1)
- The Institute of Statistical Mathematics, Tachikawa 190-0014, Japan
- 2)
- RIKEN Center for Advanced Intelligence Project, Nihon-bashi 103-0027, Japan
- 3)
- College of Industrial Technology, Nihon University, Narashino 274-0072, Japan
- 4)
- Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580, Japan
Abstract
We propose an automated method for decomposing turbulence, where the modes are derived by applying singular value decomposition to the electrostatic potential field in turbulence simulations. After classifying the modes into zonal flows and turbulence based on azimuthal integration, the turbulence is further decomposed into finer components through hierarchical clustering. This approach systematically breaks down the turbulence into hierarchical levels, providing flexible control over the degrees of freedom in the mode decomposition process.
Keywords
turbulence, electrostatic potential field, data-driven approach, clustering
Full Text
References
- [1] P.H. Diamond et al., Plasma Phys. Control. Fusion 47, R35 (2005).
- [2] T. Yamada et al., Nat. Phys. 4, 721 (2008).
- [3] H. Arakawa et al., Sci. Rep. 6, 33371 (2016).
- [4] M. Sasaki et al., Plasma Phys. Control. Fusion 61, 112001 (2019).
- [5] A. Kusaba et al., Jpn. J. Appl. Phys. 61, SA1011 (2021).
- [6] Y. Jajima et al., Plasma Phys. Control. Fusion 65, 125003 (2023).
- [7] M. Sasaki et al., Plasma Phys. Control. Fusion 63, 025004 (2020).
- [8] T. Kodahara et al., Plasma Fusion Res. 18, 1202036 (2023).
- [9] G. Yatomi et al., Plasma Phys. Control. Fusion 65, 095014 (2023).
- [10] M. Sasaki et al., Phys. Plasmas 26, 042305 (2019).
- [11] J.H. Ward Jr., J. Am. Stat. Assoc. 58, 236 (1963).
- [12] A. Okuno, https://doi.org/10.5281/zenodo.13916918