Plasma and Fusion Research

Volume 18, 2403027 (2023)

Regular Articles

Numerical Study of Heat Transport in Static Liquid Metal Exposed to Plasma with Magnetic Field
Nopparit SOMBOONKITTICHAI and Guizhong ZUO1)
Department of Physics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
(Received 9 January 2023 / Accepted 6 March 2023 / Published 23 May 2023)


Suitable management of excessive heat in liquid metal is one of key roles to accomplish the proper liquid metal usage as future alternative fusion plasma facing components. In this work, theoretical heat transfer in liquid metal in contact with magnetized plasma was carried out, and a numerical solver for investigating temperature and induced velocity by j × B force has been developed. The study suggests the trends: 1. lower bulk temperature in liquid metal at which magnetic field is presented, compared to no magnetic field, by additional convection from j × B, stronger than natural convection; and 2. asymmetric temperature distribution in liquid metal along j × B.


plasma surface interactions, plasma facing components, magnetized plasma, liquid metal, magnetohydrodynamics, Maxwell's equation, natural convection, heat conduction, generalized Ohm's law

DOI: 10.1585/pfr.18.2403027


  • [1] R. Nygren and F. Tabarés, “Liquid surfaces for fusion plasma facing components—a critical review. part i: Physics and psi”, Nucl. Mater. Energy 9, 6 (2016).
  • [2] J. Hu, G. Zuo, J. Li, N. Luo, L. Zakharov, L. Zhang, W. Zhang and P. Xu, “Investigation of lithium as plasma facing materials on ht-7”, Fusion Eng. Des. 85, no. 6, 930 (2010).
  • [3] G. Zuo, J. Hu, J. Li, N. Luo, L. Zakharov, L. Zhang and A. Ti, “First results of lithium experiments on east and ht-7”, J. Nucl. Mater. 415, no. 1, Supplement, S1062 (2011).
  • [4] J. Hu, J. Ren, Z. Sun, G. Zuo, Q. Yang, J. Li, D. Mansfield, L. Zakharov and D. Ruzic, “An overview of lithium experiments on ht-7 and east during 2012”, Fusion Eng. Des. 89, no. 12, 2875 (2014).
  • [5] G. Zuo, J. Ren, J. Hu, Z. Sun, Q. Yang, J. Li, L. Zakharov and D.N. Ruzic, “Liquid lithium surface control and its effect on plasma performance in the ht-7 tokamak”, Fusion Eng. Des. 89, no. 12, 2845 (2014).
  • [6] J. Ren, J.S. Hu, G.Z. Zuo, Z. Sun, J.G. Li, D.N. Ruzic and L.E. Zakharov, “First results of flowing liquid lithium limiter in HT-7”, Physica Scripta T159, 014033 (2014).
  • [7] G. Zuo, C. Li, R. Maingi, X. Meng, D. Andruczyk, P. Sun, Z. Sun, W. Xu, M. Huang, Z. Tang, D. Zhang, Y. Chen, Q. Zang, Y. Wang, Y. Wang, K. Tritz and J. Hu, “Effect of continuously flowing liquid li limiter on particle and heat fluxes during h-mode discharges in east”, Nucl. Mater. Energy 33, 101263 (2022).
  • [8] A. Vertkov, I. Lyublinski, F. Tabares and E. Ascasibar, “Status and prospect of the development of liquid lithium limiters for stellarotor tj-ii”, Fusion Eng. Des. 87, no. 10, 1755 (2012).
  • [9] F.L. Tabarés, E. Oyarzabal, D. Tafalla, A. Martin-Rojo, D. Alegre and A. de Castro, “First liquid lithium limiter biasing experiments in the tj-ii stellarator”, J. Nucl. Mater. 463, 1142 (2015).
  • [10] S. Mirnov and V. Evtikhin, “The tests of liquid metals (ga, li) as plasma facing components in t-3m and t-11m tokamaks”, Fusion Eng. Des. 81, no. 1, 113 (2006).
  • [11] I.E. Lyublinski and A.V. Vertkov, “Experience and technical issues of liquid lithium application as plasma facing material in tokamaks”, Fusion Eng. Des. 85, no. 6, 924 (2010).
  • [12] S. Mirnov, E. Azizov, A. Alekseev, V. Lazarev, R. Khayrutdinov, I. Lyublinski, A. Vertkov and V. Vershkov, “Li experiments on t-11m and t-10 in support of a steady-state tokamak concept with li closed loop circulation”, Nucl. Fusion 51, 073044 (2011).
  • [13] G. Mazzitelli, M. Apicella, M. Iafrati, G. Apruzzese, F. Bombarda, F. Crescenzi, L. Gabellieri, A. Mancini, M. Marinucci and A. Romano, “Experiments on the Frascati tokamak upgrade with a liquid tin limiter”, Nucl. Fusion 59, 096004 (2019).
  • [14] A. Vertkov, I. Lyublinski, M. Zharkov, G. Mazzitelli, M. Apicella and M. Iafrati, “Liquid tin limiter for ftu tokamak”, Fusion Eng. Des. 117, 130 (2017).
  • [15] R. Gomes, H. Fernandes, C. Silva, A. Sarakovskis, T. Pereira, J. Figueiredo, B. Carvalho, A. Soares, C. Varandas, O. Lielausis, A. Klyukin, E. Platacis and I. Tale, “Interaction of a liquid gallium jet with the tokamak isttok edge plasma”, Fusion Eng. Des. 83, no. 1, 102 (2008).
  • [16] R. Gomes, H. Fernandes, C. Silva, A. Sarakovskis, T. Pereira, J. Figueiredo, B. Carvalho, A. Soares, P. Duarte, C. Varandas, O. Lielausis, A. Klyukin, E. Platacis, I. Tale, and A. Alekseyv, “Liquid gallium jet–plasma interaction studies in isttok tokamak”, J. Nucl. Mater. 390-391, 938 (2009).
  • [17] V.P. Krasin and S.I. Soyustova, “Important thermodynamic parameters of lithium-tin alloys from the point of view of their use in tokamaks”, High Temperature 57, no. 2, 190 (2019).
  • [18] I. Tazhibayeva, Y. Ponkratov, I. Lyublinsky, Y. Gordienko, A. Vertkov, Y. Tulubayev, K. Samarkhanov, V. Bochkov, Y. Kozhakhmetov and N. Orazgaliyev, “Study of liquid tin-lithium alloy interaction with structural materials of fusion reactor at high temperatures”, Nucl. Mater. Energy 30, 101152 (2022).
  • [19] D. Ruzic, W. Xu, D. Andruczyk and M. Jaworski, “Lithium–metal infused trenches (limit) for heat removal in fusion devices”, Nucl. Fusion 51, 102002 (2011).
  • [20] D. Ruzic, M. Szott, C. Sandoval, M. Christenson, P. Fiflis, S. Hammouti, K. Kalathiparambil, I. Shchelkanov, D. Andruczyk, R. Stubbers, C. J. Foster and B. Jurczyk, “Flowing liquid lithium plasma-facing components – physics, technology and system analysis of the limit system”, Nucl. Mater. Energy 12, 1324 (2017).
  • [21] X. Meng, M. Huang, C. Li, Z. Sun, W. Xu, R. Maingi, K. Tritz, D. Andruczyk, Y. Qian, Q. Yang, X. Yuan, J. Huang, X. Gao, B. Yu, J. Li, G. Zuo and J. Hu, “Real-time gas cooling of flowing liquid lithium limiter for the east”, Fusion Eng. Des. 154, 111537 (2020).
  • [22] J. Gerbeau, C. Bris and T. Lelièvre, Mathematical Methods for the Magnetohydrodynamics of Liquid Metals, Numerical Mathematics and Scientific Computation (Clarendon Press, 2006).
  • [23] J. Holman, Heat Transfer (McGraw-Hill., 5th ed., 1981).
  • [24] D. Griffiths, Introduction to Electrodynamics, Pearson International Edition (Prentice Hall, 1999).
  • [25] Y. Jaluria, Computational Heat Transfer (CRC Press, 2017).
  • [26] J. Hoffman, Numerical Methods for Engineers and Scientists, McGraw-Hill series in mechanical engineering (McGraw-Hill, 1992).
  • [27] P. Stangeby, The Plasma Boundary of Magnetic Fusion Devices, Series in Plasma Physics and Fluid Dynamics (Taylor & Francis, 2000).