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Suitable management of excessive heat in liquid metal is one of key roles to accomplish the proper liquid
metal usage as future alternative fusion plasma facing components. In this work, theoretical heat transfer in liquid
metal in contact with magnetized plasma was carried out, and a numerical solver for investigating temperature
and induced velocity by j×B force has been developed. The study suggests the trends: 1. lower bulk temperature
in liquid metal at which magnetic field is presented, compared to no magnetic field, by additional convection
from j × B, stronger than natural convection; and 2. asymmetric temperature distribution in liquid metal along
j × B.
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1. Introduction
Plasma facing components (PFCs) made of liquid

metals (LM), which are low in melting point but compat-
ible with fuel, are considered to be a candidate for be-
ing inner surfaces of next step fusion device in long-run
operations [1]. Several experiments have investigated the
use of lithium (Li) [2–12], tin (Sn) [13, 14], gallium (Ga)
[15, 16] and LiSn (lithium-tin alloy) [17, 18] as PFCs. The
experiments investigated the bombardment of plasma on
LM samples suggested the depletion of LM amount [10],
which releases as LM vapor. In addition, the LiMIT sys-
tem, one of currently implemented feeding structures of
LM, is relied on temperature gradient in LM to produce an
extra force to drive LM flowing in guiding grooves [19,20].
About experimental thermal analysis, thermocouple sys-
tem with numerical analysis, via ANSYS, investigating gas
cooling in FLiLi has been reported in [21].

Understanding heat transfer in LM exposed to magne-
tized plasma helps in advancing the methodology of guid-
ing LM as PFCs and controlling their working tempera-
tures in a power-plant fusion device. The current study
has been focused on theoretically investigating heat trans-
fer in LM in magnetized plasma. The numerical solver was
implemented to study a static rectangular liquid conductor
exposed to a magnetized plasma. The physical models ex-
ploited are outlined in section 2. The assumption used in
developing the numerical solver are mentioned in section
3. The preliminary result is presented and discussed in sec-
tion 4. The last section concludes the current study.
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2. Physical Model
The exploited physical models are the momentum

equation [22] with Boussineq’s approximation [23] for a
buoyant force to be taken into account, generalized Ohm’s
law [24] and convective heat equation [25], respectively, as
follows

ρ

(
∂v
∂t
+ (v · ∇)v

)
= j × B − gρβ(T − Tre f ), (1)

E + v × B = ηj, (2)
∂T
∂t
+ (v · ∇)T =

k
ρc
∇2T +

Q
ρc
, (3)

where j is current density, v is liquid velocity, g is gravita-
tional acceleration, B is external magnetic field, E is elec-
tric field, ρ is liquid density, β is volumetric thermal expan-
sion coefficient at reference temperature (Tre f ), T is liq-
uid temperature, η is electrical resistivity, k is thermal con-
ductivity, c is specific heat capacity, and Q is source/sink
power density.

Using E = −∇ϕ [24], where ϕ is electrical potential,
and equation 2, equation 1 becomes

∂v
∂t
+ (v · ∇)v =

1
ρη

[
(−∇ϕ × B)

+ (v × B) × B] − gβ(T − Tre f ). (4)

Using charge continuity, i.e. ∇· j = 0 [24], in equation
2,

∇2ϕ = ∇ · (v × B). (5)

3. Numerical Modeling
Equations 3 - 5 are mainly solved by discretization us-

ing Leapfrog scheme [26] for T , v and ϕ, respectively.
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Liquid is assumed to be isotropic, so that approximately
β = 3α, where α is linear thermal expansion coefficient.
Bulk heat source is Joule heating power density, i.e. Q =
η j2 [24], where j is the magnitude of current density.

Plasma deposits both energy and charges on liquid
boundary. This sets up electrical potential (ϕ) and parti-
cle heat flux (Ξ) at the liquid surface. The expressions of ϕ
and Ξ [27] are

ϕ ≈ −2Te[eV], (6)

Ξ ≈ 6.83neTe[eV]vs, (7)

where Te[eV] is electron temperature, n is number density
of quasi-neutral plasma, e is elementary charge, and vs is
ion sound speed. Thermal radiation and evaporation are
adopted as cooling. The current version of the numerical
solver has yet to account for coolant flow, and vapor release
and their associated formation of shielding. Therefore, the
temperature of the liquid becomes larger than usual.

A liquid is assumed to be in a rectangular shape,
where the X, Y and Z-axes represent the coordinates in
the directions of width, length and thickness, with fixed
boundaries, in thermal equilibrium with the liquid. This
results in that the X- and Y-directions represent the hori-
zontal directions of the liquid, but the Z-direction repre-
sents the upward vertical direction of the liquid, parallel to
the surface normal. The initial temperature of the liquid is
its melting temperature. A plasma is in contact with only
the top XY-plane boundary and both YZ-plane boundaries.
Except the top XY-plane boundary of the liquid, no-skip
condition is applied at the rest boundaries, i.e. v = 0. In
figures 1 and 2, it must be noted that the reason why the
magnitudes of velocities very close to the boundaries of the
middle XZ-, YZ- and XY-planes illustrate non-zero mag-
nitude is because the current version of the code put the
no-skip condition in the ghost grid-points at the boundaries
and has yet to include the flow boundary layer adjacent to
the boundaries. Inviscid liquid is currently considered.

4. Results and Discussion
Liquid lithium (Li) is considered as liquid metal (LM)

in the current study. The size are 5 cm in width and length,
and 2 mm in thickness. LM is presumably static at the be-
ginning. Plasma is deuterium (D) with n = 1018 m−3 and
Te = 10 eV. External magnetic field strength are zero and
1 T with the inclination of 87◦ to the normal direction of
the liquid top surface, i.e. B = (0.9986, 0,−0.0014) T. The
direction of B with such an angle corresponds to the open
magnetic field next to limiter and divertor targets in toka-
maks [27].

As shown in Fig. 1, without magnetic field, buoyant
force induces small velocity mainly in the Z-direction, i.e.
natural convection. The liquid velocity is in the upward
direction in parallel to the gravitational acceleration. In
contrast, with magnetic field, the bulk horizontal velocity
is greatly induced to reach a few hundreds m/s. Such ve-

locity originates from j × B force, and it is in the direc-
tion perpendicular to j and B, as seen in Fig. 2. In case
of no B, current density ( j), contributed from conduction,
is due to the transport of deposited charges, contributed

Fig. 1 Velocity distribution in liquid Li exposed to unmagne-
tized plasma, considered at middle cross-section of liquid
Li slab.

Fig. 2 Velocity distribution in liquid Li exposed to magnetized
plasma of 1 T, with 87◦ inclination to surface normal,
considered at middle cross-section of liquid Li slab.
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Fig. 3 Temperature distribution in liquid Li, exposed to mag-
netized (B = 1 T, 87◦ inclination to surface normal) and
unmagnetized plasmas at XZ- and YZ-planes at middle
of slab in X- and Y-directions corresponding to velocity
distribution shown in Figs. 1 and 2.

from plasma bombardment, from the liquid top (XY-plane)
and side (YZ-plane) surfaces, electrically floating by ϕ, to
zero-grounded potential underneath the liquid, i.e. under
the effect of inner electric field. Its direction is mainly in
the vertical direction. Near the YZ-plane boundaries, it is
bent in a short distance before it is directed vertically by
inner electric field. For non-zero B, current density, pro-
vided by convection, is added to the conduction one. This
causes stronger j in the vertical direction of bulk LM, and
then this leads to the larger in-liquid power source.

Due to the extra motion provided by j × B, tempera-
ture gradient tends to be leveled off inside LM. Near the
plasma contacting surface, LM is relatively high in tem-
perature due to plasma bombardment. In Fig. 3, under the
coordinate system of the current study, the direction of j×B
is in the Y-direction, as illustrated in Fig. 2. The presence
of j×B allows temperature across the liquid thickness to be
lower than that of no magnetic field for the bulk XZ-plane
region, i.e. 0.8 ≤ X ≤ 4.2 cm approximately, and the bulk
YZ-plane region, i.e. 0.8 ≤ Y ≤ 4.2 cm approximately.
In the bulk XZ-plane region, all temperatures are near the
same at the same depth in its thickness. This suggests uni-
form temperature distribution. In contrast, in the bulk YZ-
plane region, i.e. 0.8 ≤ Y ≤ 4.2 cm approximately, the
upstream region, e.g. Y = 0.8 cm, is larger in near-surface
temperature than those of the middle, i.e. Y = 2.5 cm, and
the downstream, e.g. Y = 4.2 cm, regions. The gradient
of inner temperature of the upstream region is steeper than
those of the middle and the downstream regions. This sug-
gests the asymmetric temperature distribution, achieved by

horizontal induced flow provided by j × B. The induced
flow contributed from j × B tends to transport heat, asso-
ciated with plasma bombardment, in the upstream region,
and leads to mixing along the way to the downstream re-
gion. This levels off the trends of the near-surface temper-
ature in the downstream region.

Beneficial to the design of LM coolant management,
the current study may suggest that the coolant flow, e.g.
underneath the liquid Li slab, should be made in parallel
flow along the j × B direction in order to cool down the
upstream LM as priority.

5. Conclusion
The heat transfer numerical solver, consisting of mo-

mentum equation, generalized Ohm’s law and convective
heat equation, has been developed to predict the trends of
the temperature distribution and the induced liquid veloc-
ity under the presence of magnetized plasma. Apart from
plasma bombardment as an external heat source, an inter-
nal heat source by Joule heating inside the liquid conductor
was included. The plasma parameters, as boundary condi-
tions, considered in the study are of typical edge fusion
plasmas.

Even though, a non-moving liquid metal (LM) is ini-
tially implemented in a magnetized plasma, a horizontal
flowing is then induced by j × B, additional to vertically
upward natural convection by buoyancy. This means that
static LM is hardly to be achieved in a magnetized plasma,
and unavoidably, its heat transfer is not in the conduction
but the convection regimes. The study suggests that the
induced horizontal velocity by j × B is relatively large.

The inner temperature of LM becomes lower in the
presence of j×B than the case of no magnetic field. More-
over, the upstream region at which the direction is in paral-
lel to j × B is larger in near-surface temperature compared
to the middle and the downstream regions. Therefore, the
temperature asymmetrically distributes in LM caused by
convective mixing. Consequently, this suggests the re-
quirement that the coolant flow should be in the same di-
rection as j×B. This is in order to cool the upstream down.

It has to be noted that the current heat transfer solver
has not included sophisticated models of coolant pumping,
and vapor release and its shielding effect. Therefore, only
the magnitudes of temperature and induced flow velocity
may be overestimated but should not be for their trends.
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