Plasma and Fusion Research

Volume 18, 2402021 (2023)

Regular Articles


Correlation of the Orthogonal Basis of the Core Plasma Distribution to the Divertor Footprint Distribution in LHD
Hirohiko TANAKA, Suguru MASUZAKI1,2), Gakushi KAWAMURA1,2), Yuki HAYASHI1,2), Masahiro KOBAYASHI1,2), Yasuhiro SUZUKI3), Kiyofumi MUKAI1,2), Shin KAJITA4) and Noriyasu OHNO
Nagoya University, Nagoya 464-8603, Japan
1)
National Institute for Fusion Science, National Institutes of Natural Sciences, Toki 509-5292, Japan
2)
The Graduate University for Advanced Studies, SOKENDAI, Toki 509-5292, Japan
3)
Hiroshima University, Hiroshima 739-8527, Japan
4)
The University of Tokyo, Chiba 277-8561, Japan
(Received 1 December 2022 / Accepted 27 February 2023 / Published 29 March 2023)

Abstract

We have applied the multivariable analysis technique called the proper orthogonal decomposition (POD) to both the divertor particle flux distribution and the electron pressure distribution in the core region of LHD. The cross-correlation analysis indicates that 3rd, 4th, and 5th POD modes of the electron pressure distribution are highly correlated with the divertor footprint index which is a measure of where the peak position of the particle flux distribution is located on the inner divertor plate. Both the 3rd and 4th modes seem to correspond to the shift of the electron pressure peak position from the magnetic-axis radius. In contrast, 5th mode has a strong influence on the peripheral gradient of the electron pressure distribution. Their relationships with the divertor footprint could be explained by the finite β and the Pfirsch-Schlüter current effects.


Keywords

proper orthogonal decomposition, divertor footprint, toroidal divertor probe array, Thomson scattering, LHD

DOI: 10.1585/pfr.18.2402021


References

  • [1] T. Eich et al., Nucl. Fusion 53, 093031 (2013).
  • [2] S. Masuzaki et al., Nucl. Fusion 42, 750 (2002).
  • [3] G.A. Wurden et al., Nucl. Fusion 57, 056036 (2017).
  • [4] F. Effenberg et al., Nucl. Mater. Energy 18, 262 (2019).
  • [5] S. Masuzaki et al., Nucl. Fusion 53, 112001 (2013).
  • [6] S. Masuzaki et al., Fusion Sci. Technol. 50, 361 (2006).
  • [7] S. Masuzaki et al., Contrib. Plasma Phys. 50, 629 (2010).
  • [8] S. Dai et al., Plasma Phys. Control. Fusion 59, 085013 (2017).
  • [9] H. Tanaka et al., Plasma Phys. Control. Fusion 60, 125001 (2018).
  • [10] H. Tanaka et al., Nucl. Mater. Energy 19, 378 (2019).
  • [11] M. Emoto et al., Fusion Eng. Des. 81, 2019 (2006).
  • [12] P. Holmes et al., Turbulence, Coherent Structures, Dynamical Systems and Symmetry (Cambridge University, Cambridge, 1996) p. 86.
  • [13] H. Tanaka et al., Contrib. Plasma Phys. 50, 256 (2010).
  • [14] S. Ohdachi et al., Plasma Sci. Technol. 8, 45 (2006).
  • [15] Y. Asahi et al., Phys. Plasmas 28, 012304 (2021).
  • [16] K. Mukai et al., Nucl. Mater. Energy 33, 101294 (2022).
  • [17] Y. Suzuki et al., Contrib. Plasma Phys. 50, 576 (2010).
  • [18] Y. Suzuki et al., 21st Int. Stellarator-Heliotron Workshop (ISHW2017) (Kyoto, Japan, 2-6 October) (2017).
  • [19] G. Kawamura et al., Plasma Phys. Control. Fusion 60, 084005 (2018).
  • [20] Y. Hayashi et al., Fusion Eng. Des. 165, 112235 (2021).
  • [21] P. Schmid, J. Fluid Mech. 656, 5 (2010).
  • [22] C. Rowley et al., J. Fluid Mech. 641, 115 (2009).
  • [23] M. Sasaki et al., Plasma Phys. Control. Fusion 61, 112001 (2019).
  • [24] H. Natsume et al., Phys. Plasmas 27, 042301 (2020).