Plasma and Fusion Research

Volume 18, 1406007 (2023)

Regular Articles


Plasmonic Cavity Formation by Circular and Spiral Corrugations
Kazuo OGURA, Yuta ANNAKA1), Shin KUBO2) and Toru TSUJIMURA2)
Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
1)
Faculty of Engineering, Niigata University, Niigata 950-2181, Japan
2)
College of Engineering, Chubu University, Kasugai 487-8501, Japan
(Received 6 July 2022 / Accepted 31 December 2022 / Published 17 February 2023)

Abstract

Metal surfaces with sub-wavelength structures form a plasmon polariton-like surface mode, i.e., spoof-plasmon. The spoof-plasmon on a corrugated disk propagates radially and is reflected at the edge, resulting in formation of plasmonic cavity. With a concentric circular corrugation, the excited spoof-plasmons form an axisymmetric plasmonic cavity. With a spiral corrugation, the spoof-plasmons have non-zero orbital angular momenta and form a non-axisymmetric plasmonic cavity. Spoof-plasmons consisting of the plasmonic cavity transfer their angular momenta to radiation waves via the corrugated hollow waveguide by conserving their topological charges.


Keywords

corrugated disk, deep corrugation, spoof-plasmon, plasmonic cavity, angular momentum, topological charge, spiral chirality

DOI: 10.1585/pfr.18.1406007


References

  • [1] K.Y. Bliokh et al., Nat. Commun. 5, 3300 (2014).
  • [2] F. Cardano et al., Nat. Photonics 9, 776 (2015).
  • [3] Y. Gorodetski et al., Phys. Rev. Lett. 101, 043903 (2008).
  • [4] H. Kim et al., Nano Lett. 10, 529 (2010).
  • [5] G. Spector et al., Science 355, 1187 (2017).
  • [6] J.B. Pendry et al., Science 305, 847 (2004).
  • [7] F.J. Garcia-Vidal et al., Rev. Mod. Phys. 94, 2 (2022).
  • [8] S. Gong et al., J. Appl. Phys. 118, 123101 (2015).
  • [9] M.T. Sun et al., IEEE Trans. Plasma Sci. 45, 30 (2017).
  • [10] M.T. Sun et al., IEEE Trans. Plasma Sci. 46, 530 (2018).
  • [11] Y. Annaka et al., Phys. Plasmas 25, 063115 (2018).
  • [12] N.S. Ginzburg et al., Phys. Rev. Accel. Beams 21, 080701 (2018).
  • [13] S. Aoyama et al., Trans. Fusion Sci. Tech. 51(2T), 325 (2007).
  • [14] K. Ogura et al., Plasma Fusion Res. 2, S1041 (2007).
  • [15] K. Ogura et al., IEEE Trans. Plasma Sci. 44, 201 (2016).
  • [16] K. Ogura et al., IEEE Trans. Plasma Sci. 49, 40 (2021).
  • [17] O. Watanabe et al., Phys. Rev. E 63, 056503 (2001).
  • [18] H. Yamazaki et al., J. Plasma Phys. 72, 915 (2006).
  • [19] H.-Z. Yao et al., Opt. Commun. 354, 401 (2015).
  • [20] W. Main et al., IEEE Trans. Plasma Sci. 22, 566 (1994).
  • [21] Md. R. Amin et al., J. Phys. Soc. Jpn. 65, 627 (1996).
  • [22] K. Ogura et al., Plasma Fusion Res. 7, 2406022 (2012).
  • [23] K. Ogura et al., Plasma Fusion Res. 14, 2406008 (2019).
  • [24] S. Kobayashi et al., IEEE Trans. Plasma Sci. 26, 947 (1998).
  • [25] R. Courant and D. Hirbert, Methods of Mathematical Physics (Wiley, New York, 1989), Vol. 2, Chap. 3.
  • [26] S. Silver, Microwave Antenna Theory and Design (Mcgraw-Hill, New York, 1949).
  • [27] P.J.B. Clarricoats and A.D. Olver, Corrugated Horns for Microwave Antenna (Peter Peregrinus, London, 1984).
  • [28] Y. Gorodetski et al., Nano Lett. 9, 3016 (2009).
  • [29] Y. Gorodetski et al., Phys. Rev. Lett. 110, 203906 (2013).
  • [30] A.I. Fernández et al., Appl. Phys. Lett. 93, 141109 (2008).
  • [31] S. Zhang et al., Phys. Rev. Lett. 107, 096801 (2011).
  • [32] F. Ruting et al., Phys. Rev. B 86, 075437 (2012).