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Plasmonic Cavity Formation by Circular and Spiral Corrugations
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Metal surfaces with sub-wavelength structures form a plasmon polariton-like surface mode, i.e., spoof-
plasmon. The spoof-plasmon on a corrugated disk propagates radially and is reflected at the edge, resulting
in formation of plasmonic cavity. With a concentric circular corrugation, the excited spoof-plasmons form an
axisymmetric plasmonic cavity. With a spiral corrugation, the spoof-plasmons have non-zero orbital angular
momenta and form a non-axisymmetric plasmonic cavity. Spoof-plasmons consisting of the plasmonic cavity
transfer their angular momenta to radiation waves via the corrugated hollow waveguide by conserving their topo-
logical charges.
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1. Introduction
Optical surface plasmon polariton (SPP) formed on

material boundaries has orbital and spin angular momenta
and its novel applications have been extensively studied in
recent years [1, 2]. For example, angular momenta of SPP
are controlled by corrugated structures on circular disks
[3,4]. The SPPs excited propagate inwardly and outwardly
along the disk surface, resulting in formation of plasmonic
microcavity [5]. By using the cylindrical coordinate sys-
tem (r, φ, z), the z-component of the eigen mode on the disk
may be expressed as,

Ez = E0Jm(krr)exp[i(kzz + mφ − ωt)]. (1)

Here, Jm is the mth order Bessel function of the first kind
and m is the azimuthal mode number, E0 is a constant, kz

is the wavenumber perpendicular to the disk surface, and
kr is the radial wavenumber. Note that m corresponds to
a normalized angular momentum and is referred to as a
topological charge of SPP. A spiral structure of geomet-
rical order lS may give SPP a topological charge m = lS ,
forming a plasmonic vortex with m [5].

Metamaterials like gratings or corrugated wall sur-
faces can form a surface wave which is mimicking the SPP
and is called spoof-plasmon or spoof-SP [6, 7]. The spoof-
plasmon is a surface wave extending along the metama-
terial surface. A superior aspect of spoof-plasmon is that
the dispersion characteristics can be artificially controlled
by the structure. Therefore, physics and applications of
surface-wave angular momentum in optics could be ex-
tended to the microwave and terahertz-wave regions [7].
For example, the spoof-plasmon is used in intense tera-
hertz surface wave oscillators (SWOs) or backward wave
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oscillators (BWOs) [8–10]. In real SWO devices, radia-
tions with the azimuthal mode number m up to 30 are ob-
served [11]. Hence, SWO is a very attractive candidate for
generators of plasmonic vortex with large m. However,
many spoof-plasmons having various m are generated si-
multaneously, resulting in a multimode operation. This
is the well-known mode competition problem. To solve
this problem, two-dimensional (2D) Bragg structures have
been proposed to limit the operation to a small value of
m [12]. This 2D structure has a doubly periodic corru-
gation in the longitudinal and transverse directions. The
corrugations are shallow with the ratio of the corrugation
depth to the period about 0.3, see Fig. 1. The SWO with
such shallow corrugation should be driven by relativistic
electron beams of about 300 keV or higher energy, because
the operation is restricted to the Bragg resonance point,
corresponding the π-point near the light velocity.

To use the asset of the spoof-plasmon, the spectrum
needs to be widened away from the Bragg point, by deep-

Fig. 1 Periodical corrugation with period d, amplitude h, and
width w. The corrugation wavenumber is k0 = 2π/d. The
corrugation length L = Nd and N is the number of pe-
riods. Spoof-plasmons are formed and propagate with
wavenumber k− and k+ along the corrugation.
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ening the corrugation. The deep corrugations have been
successfully used for weakly relativistic SWOs with elec-
tron beams less than 100 keV [8–11, 13, 14]. In this case,
axially forward and backward spoof-plasmons form an ax-
ial resonant cavity, which can strongly enhance terahertz-
wave radiations. Thus, the operation based on the plas-
monic cavity formation is very attractive for future intense
terahertz-wave generators. However, it is still hard chal-
lenge to control m far from the Bragg point with deep cor-
rugations.

In this paper, we examine plasmonic cavity on disks
with circular and spiral corrugations. The corrugations are
deep with the ratio of the corrugation depth to the period
larger than 0.6, aiming at control of m far from the Bragg
point. The plasmonic cavity generated by the deep cor-
rugation are investigated by applying the cavity resonance
method using a vector network analyzer (VNA).

2. Plasmonic Cavity on Periodic
Corrugation
Figure 1 is a schematic of periodic corrugation with

period d, amplitude h and width w. The corrugation
wavenumber is defined as k0 = 2π/d. We experimen-
tally examine plasmonic cavities of corrugated disks like
Fig. 2 (a) and compare with those of waveguide type cor-
rugations like Fig. 2 (b). First, we briefly summarize the
plasmonic cavity formation by the waveguide type corru-
gations having axially corrugated structures. According
to the Floquet’s theorem under the spatial periodicity in
the z-direction, the dispersion curves of electromagnetic
(EM) waves are periodic in the axial wavenumber (kz)
space with a period of k0 = 2π/d. Figure 3 shows dis-
persion curves of axisymmetric TM01 mode, in the first
Brillouin zone (−k0/2 ≤ kz ≤ k0/2) based on the reduced-
zone scheme. These dispersion curves are obtained using
numerical methods presented in Refs. [15, 16]. For non-
axisymmetric hybrid waveguide modes, the letters of EH
and HE are often used. The definition is rather ambigu-
ous. This paper follows the definition in Refs. [17–19]:
the TE (TM) mode is dominant in the HE (EH) mode
around kz = 0. There is an upper cutoff at the π-point
(kz = ±k0/2), where the normalized wavenumber is ±0.5.
The dispersion curves are in the slow-wave region and
the EM wave phase velocity is less than the light veloc-
ity. They are an artificial evanescent surface wave and
are called spoof-plasmon. For the axial corrugation like
Fig. 2 (b), the evanescent nature appears in the r-direction.
The corrugation depth strongly affects the upper cutoff fre-
quency. Deeply corrugated structures are essential for in-
tense terahertz SWOs driven by weakly relativistic or non-
relativistic electron beams [8–11, 13, 14].

A finite-length corrugation causes end’s reflections
and generates a forward (k+) and backward (k−) spoof-
plasmons as shown in Fig. 3. They form standing waves
(plasmonic cavities) satisfying the following relation for

Fig. 2 Examples of periodically corrugated metals: (a) circular
disk and (b) waveguide. The r- and z-axes of cylindrical
coordinate system (r, φ, z) are defined in the figure, where
the φ-direction is defined according to the right-handed
rule.

Fig. 3 Dispersion curves of axisymmetric TM01 mode in the
periodically corrugated wavuguide for intense terahertz
SWOs, based on the reduced-zone shceme. The ratio of
the corrugation depth to the corrugation period 0.3, 0.6,
and 1.2, from the top. Solid thin lines (red) are light
lines. Dotted lines are beams lines for 30 keV (black)
and 300 keV (blue). Spoof-plasmons with wavenumber
k− and k+ propegating along the corrugation form a stand-
ing wave, i.e., a plasmonic cavity.

the angular frequency ω.

ω(k+) = ω(k−). (2)

Generally, k+ = k− and the plasmonic cavity at the up-
per cutoff may have a field pattern like Fig. 4 (a) [20–23].
The corresponding wavelength is λπ = 2d. If both ends
of cavity are strictly defined by metallic plates, amplitude
of standing wave distributes like Fig. 4 (b) for a close-close
cavity. Figure 4 (c) corresponds to an open-open cavity. In
these cases, the wavenumber of plasmonic cavity may be
given by,

kr =
π

d
× n

N
. (3)

Here, N is the number of corrugation periods, and n is in-
teger ranging from 0 to N. For a practical case, ends are
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Fig. 4 (a) Field pattern of the π-point plasmonic cavity, (b), (c),
and (d) are amplitude distributions of standing waves in
short-short, open-open, and short-open cavities, respec-
tively. (b) and (c) can satisfy the same boundary condi-
tions on both ends. For (d), the boundary conditions on
both ends differ and the standing wave is shifted by λ/4
leading to the half-integer spacing, as mentioned in the
main text. Here, λ is the wavelength.

not defined strictly and may have different conditions. For
example, one end is open and the other one is close like
Fig. 4 (d). Such a cavity has resonant modes with “a half-
integer” spacing given by,

kr =
π

d
× n − 1/2

N
, (4)

with an integer n ranging from 1 to N [24].
Next, we discuss spoof-plasmons on a circular disk

like Fig. 2 (a). For the corrugated disk, the evanescence
of spoof-plasmon appears in the z-direction. The spoof-
plasmons propagate in the r-direction, clinging to the disk
surface. The radial functions of the spoof-plasmon are ex-
pressed by the Bessel functions [25]. The outgoing (k+)
and incoming (k−) waves in Fig. 1 or 3 may be expressed
by the Hankel function of the first kind H(1)

m (k+r) and sec-
ond kind H(2)

m (k−r), respectively. They can form a cylin-
drical standing wave expressed by the Bessel function of
the first kind Jm(krr) with kr = k+ = k−, like Eq. (1). To
analyze plasmonic cavities formed by the radial standing
wave, we assume the parallel dispersion characteristics to
the axial corrugation case;

(2.1) the corrugation in the r-direction generates the up-
per cutoff at the π-point of kr = k0/2(= π/d)

(2.2) the radial wavenumbers of plasmonic cavity are
quantized with equal intervals of π/d, just like the
axial plasmonic cavities.

In the followings, the radial plasmonic cavities are ex-
amined experimentally by comparing with the dispersion
characteristics of the spoof-plasmons that can be excited
in the corrugated waveguide.

3. Plasmonic Cavity on Corrugated
Disk
Figures 5 (a), (b), and (c) show flat-surface disk with-

out a reflector and circularly corrugated disk without and
with reflector, respectively. The corrugation parameters are

Fig. 5 Disks with (a) flat surface, (b) circular corrugation and (c)
circular corrugation adding a reflector around the periph-
eral edge. They are made of aluminum and excited by a
1-mm needle antenna at the center. The radius of disk is
R0 = 26.0 mm. The circular corrugations are concentric
rings (lS = 0) and the number of circles is N = 7.

Table 1 Parameters of corrugations with deep corrugations.

Fig. 6 Experimental setup for the single port measurement. Re-
flection (S11) from the disk is measured over the preset
frequency range. The r- and z-axes of right-handed cylin-
drical coordinate system (r, φ, z) are shown in the figure.
The resonances appear as spikes of S11 at frequencies
where the reflection is sharply reduced.

listed in Table 1. Numerically obtained upper cutoff fre-
quencies ΩA

UC of waveguide type corrugation is also listed.
The corrugations are deep with the depth 2h/d of about 0.7.
Plasmonic cavity formation is examined based on the cav-
ity resonance method using an experimental setup shown
in Fig. 6. Reflection S 11 from the disk is measured as a
function of frequency by using a VNA (Anritsu 37269D).
Resonances due to the plasmonic cavity formation appear
as spikes of S11. Figure 7 (a) shows the experimental re-
sult for the flat disk. SPPs of aluminum surface are excited
at the center and propagate outwardly. This outgoing SPP
on the disk is expressed by the zero-order Hankel function
of the first kind, which is given by superposing the outgo-
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Fig. 7 Measured S11 profiles for (a) flat disk and (b) corrugated
disk without reflector and (c) with the reflector. Red ar-
rows in (b) and (c) indicate the upper cutoff at the π-point
whose frequency isΩA

UC in Table 1. The disks with lS = 0
in Figs. 5 (b) and (c) are used.

ing plane waves [25]. Since the measured S 11 shows no
spikes, reflectance of the outgoing SPP at the peripheral
edge is too weak to form a plasmonic cavity.

In contrast to the flat disk, the corrugation on the disk
produces plasmonic cavities even if there is no reflector as
shown in Fig. 7 (b), where observed spikes are denoted as
1, 2, 3, and 4 from the top. By applying Eq. (3) with the
open-open cavity assumed, these four resonances are plot-
ted at krr0 = 7π/7, 6π/7, 5π/7, and 4π/7 by filled circles in
Fig. 8 (a). The upper cutoff frequency is that of the upper
most resonance, which is 22.6 GHz. This is very close to
ΩA

UC = 23.0 GHz in Table 1, which is numerically obtained
for the TM01 mode of the corrugated waveguide.

In the case of corrugated disk, incoming (k−) as well
as outgoing (k+) spoof-plasmons are generated as schemat-
ically shown in Fig. 1 or 3. They cling to the corrugated
surface and form standing waves without any reflector as
shown in Fig. 7 (b). In Refs. [22,23], such a spoof-plasmon
is named bounded surface wave. In Fig. 8 (a), the disper-
sion curve of axisymmetric TM01 mode for the axially cor-
rugated waveguide is also plotted as a reference. This nu-
merical curve coincides with the experimental data within
2%, and well represents the dispersion characteristics of
the spoof-plasmon formed in the r-direction.

Figure 7 (c) is the result of the S 11 measurement for
the corrugated disk with a reflector around the outer edge
of disk in Fig. 5 (c). Five spikes are observed and denoted
by 1, 2, 3, 4, and 5. The boundary condition in this case
may correspond to short at the reflector and open at the
center. And, observed five resonances are plotted by open
circles in Fig. 8 (a) according to Eq. (4) for the short-open
cavity. Note that the plasmonic cavity at krd = (3−1/2)π/7
(14.7 GHz) cannot be formed without the reflector and
hence the spoof-plasmons in this region are not bounded
surface waves. They are hybrid surface waves, which have
the similar characteristics as SPPs of flat aluminum sur-
face [6, 7]. Hence, resonance 5 in Fig. 7 (c) disappears if
the reflector is removed like Fig. 7 (a).

Fig. 8 Resonance frequencies obtained by the reflection mea-
surement are plotted as a function of wavenumber for (a)
lS = 0 and (b) lS = 1 and −1. The upper horizontal axes
correspond to the normalized wavenumber. Since reso-
nances are composed of waves with k− and k+ as shown in
Fig. 3, they are presented in the positive wavenumber re-
gion only (0 ≤ krd ≤ π) with k = k±. In (a), four filled cir-
cles correspond to four spikes of Fig. 7 (b), and five open
circles correspond to five spikes of Fig. 7 (c). In (b), two
filled circles correspond to two spikes of Fig. 10 (a) and
five open circles (five crosses) correspond to five spikes
of Fig. 10 (b) (Fig. 10 (c)). Sloid corves in (a) and (b) are
respectively the dispersion curves of axisymmetric TM01

mode and non-axisymmetric HE11 mode for the axially
corrugated waveguide, which are obtained using numeri-
cal procedures presented in Refs. [15, 16] with the corru-
gation parameters listed in Table 1. Dotted limes are light
lines.

Fig. 9 Spiral disk of lS = 1: (left) conceptual diagram and
(right) photo of manufactured spiral with a reflector made
of aluminum. It has six spirals, N = 6. The inner ra-
dius of reflector is R0 = 26.0 mm. The plus sign of
lS corresponds to the right-handed direction of the spi-
ral looking from the top, which generates an incoming
right-handed wave [4,5]. For excitation of outgoing right-
handed wave, a reversed spiral with negative lS should be
used.

Next, we examine plasmonic cavities formed on the
spiral disk. Figure 9 shows the spiral disk of lS = 1
with the reflector, which has the rotational number of six
(N = 6). Figures 10 (a) and (b) show the reflectance S 11

measured as a function of frequency. Without the reflector,
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Fig. 10 Measured S11 profiles for the spiral disks: (a) lS = 1
without a reflector, (b) lS = 1 with a reflector, and (c)
lS = −1 with a reflector. The frequencies at each res-
onance 1, 2, 3, 4 and 5 in (b) and (c) have almost the
same values. Red arrows in (a), (b) and (c) indicate the
upper cutoff at the π-point, whose frequency is ΩA

UC in
Table 1.

very small S 11 spikes denoted 1 and 2 are obtained near
the π-point. These resonances are plotted at krd = 6π/6
and 5π/6 by filled circles in Fig. 8 (b) by applying Eq. (3)
with the open-open cavity assumed. With a reflector at the
outer edge of disk, five resonances denoted by 1, 2, 3, 4,
and 5 are observed as shown in Fig. 10 (b). They are plot-
ted at krd = (6 − 1/2)π/6, (5 − 1/2)π/6, (4 − 1/2)π/6,
(3−1/2)π/6, and (2−1/2)π/6 by open circles in Fig. 8 (b),
according to Eq. (4) for the short-open cavity.

In Table 1, ΩA
UC = 25.3 GHz for lS = 1 is a numeri-

cal upper cutoff frequency of the HE11 mode for the cor-
rugated waveguide and is about 3% greater than the fre-
quency of the uppermost resonance 1 of 24.5 GHz. The
dispersion curve of the waveguide HE11 mode is also plot-
ted in Fig. 8 (b) and well approximates the dispersion char-
acteristics of the non-axisymmetric spoof-plasmon of the
spiral disk.

4. Angular Momentum of Spoof-
Plasmon
To examine the angular momentum of spoof-plasmon,

we measure the radiation patterns from a corrugated hol-
low waveguide excited by the disks as shown in Fig. 11 (a).
The corrugation of the waveguide is axisymmetric and has
no chirality like helical structures, and its parameters are
the same as those for lS = 1 listed in Table 1. Radiation
pattern from the waveguide is measured as angular distri-
butions of the transmittance S21 by the VNA. A receiv-
ing horn antenna is moved on an equatorial plane around a
pivot at the center of output of the waveguide. The distance
between the antenna and the pivot is 600 mm. The electric
fields are measured with the horizontal (θ) and vertical (ϕ)
polarizatins as defined in Fig. 11 (a), which are respectively
denoted as Eθ and Eϕ. Figure 11 (b) shows the radiation
patterns with the disk of lS = 0. The measured frequn-

Fig. 11 (a) Experimental setup for radiation pattern measure-
ment. The corrugated hollow waveguide is excited by
a disk from the left side and radiation patterns are mea-
sured as S 21 distribution with VNA from the right side.
The corrugated hollow waveguide has parameters of
2h = 2.2 mm, d = 1.5 mm, and z0 = 3.0 mm, which
correspond to those for the 25.3 GHz upper cutoff in Ta-
ble 1. Its averaged radius is 15.7 mm and periodic num-
ber is 10. (b) and (c) are the measured S 21 with the disks
of lS = 0 and −1, respectively. In (c), the radiation pat-
tern replacing the corrugated hollow waveguide with a
straight waveguide is also plotted.

cies are chosen as S 21 takes a maximum value, and are
near the upper cutoff of Figs. 7 (b) and (c). The radiation
pattern is dominated by the axisymmetric TM01 mode. In
Fig. 11 (c), the radiation patterns with the disk of lS = −1
are shown. The frequncies of maximum S 21 are obtained
near the resonance 3. In this case, the radiation patterns
have a peak around the center, which can be explained by
the TE11 component [26, 27].

Figure 12 shows angular distributions of S 21 near
the large resonances 3 (20.7 GHz) and 4 (17.8 GHz) in
Figs. 10 (b) and (c). Near resonances, incoming and out-
going spoof-plasmons form cavities for both lS = ±1 spi-
rals as shown in Fig. 10. And the outgoing spoof-plasmon
couples to the waveguide. For the spiral disk with the re-
flector like Fig. 9, the reflection S 11 is dominated by the
plasmonic cavities only on the disk. On the other hand, the
transmittance S 21 in Figs. 11 and 12 is affected by the plas-
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Fig. 12 Angular distributions of S 21 with the spiral disks of lS =

−1 and 1. The same experimental setup of Fig. 11 (a)
with the Eϕ polarity is used. Measured frequencies are
20.7 and 17.8 GHz, which respectively correspond the
large resonances 3 and 4 in Figs. 10 (b) and (c).

monic cavities on the corrugated waveguide wall as well
as on the disk. Note that spoof-plasmons are effectively
generated in the bounded surface-wave region, which is
above about 20 GHz for the corrugation waveguide used in
Fig. 11 (a) [23]. Below the bounded surface-wave region,
efficiency to excite spoof-plasmons on the waveguide wall
may reduce resulting in a weak coupling between the disk
and the waveguide. And hence, S 21 at 17.8 GHz may be-
come small compared with S 21 at 20.7 GHz for both spirals
with lS = ±1 in Fig. 12.

Relationship between topological charges of spoof-
plasmon excited on the disk and the waveguide are con-
sidered. The topological charge is a normalized angular
momentum, which consists of spin and orbit angular mo-
mentum [3–5,28,29]. The conservation law of angular mo-
mentum may be given by,

mDisk = mWG, (5)

where mDisk and mWG are topological charges of the spoof-
plasmon formed on the surfaces of the corrugated disk and
the hollow corrugated waveguide, respectively. The mDisk

contains angular momenta generated by the spiral with lS .
For the disk with lS = 0, the spoof-plasmon on the disk has
mDisk = 0 and its zero-angular mumontum is transferred
to the corrugated wavegugide. The corresponding spoof-
plasmon of the corrugated waveguide is the axisymmetric
TM01 mode with mWG = 0, which is radiated from the
waveguide and is observed as shown in Fig. 11 (b).

For the spiral disk with lS = −1, the outgoing right-
handed spoof-plasmon with mDisk = 1 is excited and cou-
ples to the non-axisymmetric mode with mWG = 1 in the
corrugated waveguide. The corresponding spoof-plasmon
of the waveguide is the HE11 mode. This mode may
have a clockwise angular momentum corresponding to the
lS = −1 spiral. When the corrugated waveguide is replaced
by a straight waveguide, the peak value of S21 decreases
by about 6 dB. This is attributed to the fact that no spoof-
plasmon exists in the straight waveguide to accept the an-
gular momentum from the disk. The volumetric TE11 and

TM11 modes in the straight waveguide should be excited.
In this case, the coupling between the disk and the waveg-
uide becomes weak as shown in Fig. 11 (c).

5. Discussion and Conclusion
Here, we discuss the difference between the observed

S11 behaviors of the disks with lS = 0 and ±1. For the
concentric corrugation (lS = 0), the outgoing and incom-
ing spoof-plasmons have mDisk = 0 and are respectively
expressed by H(1)

0 (k+r) and H(2)
0 (k−r). They form a stand-

ing wave expressed by J0(kr) with k± = k. In this case,
the S11 spike becomes large as approaching the π-point like
Figs. 7 (b) and (c). Since the S 21 spikes becomes maximum
near the upper cutoff of the spoof-plasmons with mDisk = 0,
the plasmonic cavities around this region can strongly cou-
ple to the waveguide mode.

On the other hand, the S11 spikes near the π-point are
small for the spiral corrugation as shown in Figs. 10 (a) -
(c). In Refs. [30–32], it is pointed out that spoof-plasmons
attributed to helically corrugated wires have a distinctive
chiral character, that is, the spoof-plasmon with the az-
imuthal mode number m has the following effective az-
imuthal mode number m̃ near the π-point.

m̃ ≈ m +
1
2
. (6)

Away from the π-point, this chirality is negligible and
m̃ ≈ m. If this chirality effect appears in our spiral case
of lS = −1 disk, the resonance 3 (21.1 GHz) in Fig. 10 (c),
which is plotted at kr = 0.58π/d in Fig. 8 (b), corresponds
to the case apart from the π-point (kr = π/d). Its effec-
tive azimuthal mode number is m̃ ≈ m. The experiment
shows that the spike is large, comparable to those of the
disk with lS = 0, for which there is no chirality effect.
By approaching the π-point like resonance 1 in Fig. 10 (c),
which is plotted at kr = 0.92π/d in Fig. 8 (b), their effec-
tive azimuthal mode numbers may increase to m̃ ≈ 3/2.
The corresponding S 11 spike becomes very small indicat-
ing that the excitation efficiency of this mode is reduced.
The same reduction of S11 is also observed by reversing the
spiral direction, that is, using the spiral disk with lS = 1, as
shown in Fig. 10 (b). Our experiments show that the plas-
monic cavity close to the π-point on the spiral disk cou-
ples poorly to the hollow corrugated waveguide. And the
plasmonic cavity away from the π-point is used to maxi-
mize the S21. Since mechanism causing the observed re-
duction of S11 and coupling efficiency to the waveguide is
unresolved, the chirality effects of the spiral disk should be
studied more definitely, by measuring EM field properties
including the radial and azimuthal distributions.

In conclusion, plasmonic cavities formed on disks
with circular and spiral corrugations are examined. Ra-
dially propagating spoof-plasmons are excited by a nee-
dle antenna at the center. The incoming as well as outgo-
ing spoof-plasmons are generated due to the corrugation of
the disk and the cylindrical plasmonic cavities are formed.
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Their dispersion characteristics are parallel to those for the
axial corrugation. When the disk has the concentric ring
structure, the axisymmetric cavities are formed. If the disk
has the spiral structure, the spoof-plasmons form the non-
axisymmetric plasmonic cavities. These plasmonic cav-
ities can excite the spoof-plasmon in the corrugated hol-
low waveguide. The angular momentum transferred from
the disk to the hollow waveguide is ruled by the geomet-
rical order of the disk. The control of angular momentum
presented in this paper may be of considerable interest for
applications in terahertz-wave as well as optics regions in-
cluding a new intense terahertz-wave source.
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