Plasma and Fusion Research

Volume 16, 2403054 (2021)

Regular Articles


Improving Gyrokinetic Field Solvers toward Whole-Volume Modeling of Stellarators
Toseo MORITAKA1,2), Michael COLE3), Robert HAGER3), Seung-Hoe KU3), C. S. CHANG3) and Seiji ISHIGURO1,2)
1)
National Institute for Fusion Science, Toki 509-5292, Japan
2)
The Graduate University for Advanced Studies, SOKENDAI, Toki 509-5292, Japan
3)
Princeton Plasma Physics Laboratory, New Jersey 08540, USA
(Received 7 December 2020 / Accepted 9 February 2021 / Published 7 June 2021)

Abstract

We develop novel numerical schemes for electrostatic field solvers toward the whole-volume gyrokinetic simulation of stellarators. The gyrokinetic Poisson equation should be solved for complicated magnetic fields in the stellarator without assuming nested flux surfaces and toroidal symmetry. The developed schemes enable us to generate suitable unstructured meshes and obtain the solutions within a limited numerical cost for general magnetic field structures. These schemes will be integrated and utilized in X-point Gyrokinetic Code - Stellarator (XGC-S).


Keywords

gyrokinetic simulation, stellarator, mesh generation, field solver, whole-volume modeling

DOI: 10.1585/pfr.16.2403054


References

  • [1] W. Lee, J. Comput. Phys. 72, 243 (1987).
  • [2] Z. Lin, W.M. Tang and W. Lee, Phys. Plasmas 2, 2975 (1995).
  • [3] Y. Nishimura, Z. Lin, J.L.V. Lewandowski and S. Ethier, J. Comput. Phys. 214, 657 (2006).
  • [4] S. Jolliet, A. Bottino and P. Angelino, Comput. Phys. Commun. 177, 409 (2007).
  • [5] E. D'Azevedo, S. Abbott, T. Koskela et al., Chapter 24. The Fusion Code XGC: Enabling Kinetic Study of Multiscale Edge Turbulent Transport in ITER. In Exascale Scientific Applications: Scalability and Performance Portability; CRC Press: Boca Raton, FL, USA, 2017.
  • [6] F. Zhang, R. Hager, S. Ku et al., Eng. Comput. 32, 285 (2016).
  • [7] S. Ku, C.S. Chang, R. Hager et al., Phys. Plasmas 25, 056107 (2018).
  • [8] J. Dominski, C.S. Chang, R. Hager et al., J. Plasma Phys. 85, 905850510 (2019).
  • [9] S. Ku, C-S. Chang and P. Diamond, Nucl. Fusion 49, 115021 (2009).
  • [10] C.S. Chang, S. Ku and R.M. Churchill, Phys. Plasmas 26, 014504 (2019).
  • [11] D.P. Stotler, J. Lang and C.S. Chang, Nucl. Fusion 57, 086028 (2017).
  • [12] R.M. Churchill, J.M. Canik, C.S. Chang et al., Nucl. Mater. Energy 12, 978 (2017).
  • [13] C.-S. Chang, S. Ku, A. Loarte et al., Nucl. Fusion 57, 116023 (2017).
  • [14] N. Ohyabu, T. Watanabe, H. Ji et al., Nucl. Fusion 34, 387 (1994).
  • [15] T. Watanabe, Y. Matsumoto, M. Hishiki et al., Nucl. Fusion 46, 291 (2006).
  • [16] K. Toi, F. Watanabe, S. Ohdachi et al., Fusion Sci. Technol. 58, 61 (2010).
  • [17] T. Moritaka, R. Hager, M. Cole et al., Plasma 2, 179 (2019).
  • [18] M.D.J. Cole, R. Hager, T. Moritaka et al., Phys. Plasmas 26, 082501 (2019).
  • [19] M.D.J. Cole, T. Moritaka, R. Hager et al., Phys. Plasmas 27, 044501 (2019).
  • [20] T.S. Hahm, Phys. Fluids 31, 2670 (1988).
  • [21] E. Lanti, J. Dominski, S. Brunner et al., J. Phys. Conf, Series 775, 012006 (2016).
  • [22] Triangle: A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator. Available online: https://www.cs.cmu.edu/˜quake/triangle.html