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We develop novel numerical schemes for electrostatic field solvers toward the whole-volume gyrokinetic
simulation of stellarators. The gyrokinetic Poisson equation should be solved for complicated magnetic fields
in the stellarator without assuming nested flux surfaces and toroidal symmetry. The developed schemes enable
us to generate suitable unstructured meshes and obtain the solutions within a limited numerical cost for general
magnetic field structures. These schemes will be integrated and utilized in X-point Gyrokinetic Code - Stellarator
(XGC-S).
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1. Introduction
Gyrokinetic simulation [1] has been widely employed

to demonstrate global transport phenomena in fusion de-
vices associated with plasma kinetic effects. Equilibrium
magnetic field structure plays an essential role in the gy-
rokinetic modeling. Most conventional models employ
flux coordinates to take the magnetic field structures into
account and concentrate on core transport phenomena. The
alternative approach uses unstructured mesh generated ac-
cording to the magnetic field structure [2–5]. This ap-
proach is usually combined with gyrokinetic particle-in-
cell (PIC) models. In this model, field perturbations are
described on unstructured meshes while particle motion is
calculated using computational particles.

The gyrokinetic PIC code, X-point Gyrokinetic Code
(XGC), has been developed for whole-volume simulation
of Tokamaks including the edge region [5]. The unstruc-
tured meshes are generated based on the flux function
[6]. The whole-volume simulation is useful to investigate
core-edge coupling phenomena such as L-H transition [7]
and impurity transport [8]. The kinetic modeling of edge
plasma considers anisotropic plasma flux, edge plasma tur-
bulence [9], X-point orbit loss [10] and neutral recycling
processes [11, 12]. This feature is important for accurate
estimation of divertor heat load [13].

The whole-volume modeling may have more impor-
tance in stellarators because of unclear separation between
core and edge regions. Entangled open field lines with
significantly long connection lengths characterize the er-

author’s e-mail: moritaka.toseo@nifs.ac.jp
∗) This article is based on the presentation at the 29th International Toki
Conference on Plasma and Fusion Research (ITC29).

godic layer between these regions [14, 15]. L-H transi-
tion has been observed in Large Helical Device (LHD) ac-
companied by an external transport barrier around the er-
godic layer [16]. The chaotic nature of the entangled field
lines potentially enhances the importance of microscopic
plasma effects.

We are extending XGC toward the whole-volume
modeling of stellarators [17–19], namely XGC-Stellarator
(XGC-S). We have demonstrated basic core transport phe-
nomena such as GAM oscillation in LHD [17], and ion
temperature gradient modes in W-7X and other stellara-
tors [18, 19]. Concerning the edge region, the high-energy
particle orbits in an LHD equilibrium including the edge
region has been benchmarked with the other simulation re-
sults [17]. However, the field solver applicable to the stel-
larator edge region remains for development to perform a
self-consistent gyrokinetic simulation.

In this paper, we introduce novel numerical schemes
for electrostatic field solver in the gyrokinetic modeling of
stellarators. In section 2, we show the basic field equa-
tion and explain the difficulties in solving the equation in
stellarator geometries. Section 3 describes the first numer-
ical scheme on the efficient solution method for general
magnetic field structures. The second scheme explained in
section 4 generates curved surfaces suitable to discretize
the equation using unstructured meshes. We present the
summary in section 5.

2. Basic Field Equation
We consider the lowest-order gyrokinetic Poisson

equation for slowly variating dynamics with a time scale
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longer than electron thermal motion [20],

−∇⊥ · n0m
eB2
∇⊥Φ + n0

δΦ

Te
= n̄i − nNA

e , (1)

where Φ, n0, B, Te, and n̄i are electrostatic potential, equi-
librium plasma density, magnetic field strength, electron
temperature, and the gyro-center ion density, respectively.
m and e denote ion mass and the elementary charge, re-
spectively. ∇⊥ denotes gradient operator perpendicular to
the magnetic field. Here, electron dynamics are modeled
by the adiabatic response and the deviation due to electron
kinetic effects. Resulting electron density perturbations are
given by n0δΦ/Te and nNA

e , respectively. δΦ is defined by
δΦ = Φ − 〈Φ〉, where 〈〉 denotes flux average operator.
Once the density term, n = n̄i + nNA

e , is given, finite ele-
ment method is used to compute electrostatic potential on
each mesh vertex.

The field equation, Eq. 1, is a linear equation on elec-
trostatic potential, Φ. However, the flux average operator
in the adiabatic response term makes the matrix dense, and
standard algorithms such as the preconditioned conjugate
gradient method are not effective in this case. One solution
(scheme A) is to separate the density into flux average and
perturbation components, n = 〈n〉+ δn. Field equations for
these components,

−∇⊥ · n0m
eB2
∇⊥ΦA + n0

δΦA

Te
= 〈n〉,

−∇⊥ · n0m
eB2
∇⊥ΦB + n0

δΦB

Te
= δn, (2)

can be reduced to two equations with sparse matrices,

−∇⊥ · α∇⊥〈ΦA〉 = 〈n〉,
−∇⊥ · α∇⊥δΦB + βδΦB = δn, (3)

under the assumptions δΦA = 0 and 〈ΦB〉 = 0, where α =
n0m/eB2 and β = n0/Te. The final solution of Eq. 1 is given
by Φ = ΦA+ΦB. This method is valid if the magnetic field
equilibrium is well approximated by a cylindrical tokamak
satisfying

〈∇⊥ · α∇⊥Φ〉 = ∇⊥ · α∇⊥〈Φ〉,
〈∇⊥ · α∇⊥δΦ〉 = 0. (4)

Another method (scheme B) is to solve modified equa-
tions with sparse matrices iteratively. In this method, we
solve the equation on Φn+1,

−∇⊥ · α∇⊥δΦn+1 + βδΦn+1 = n + ∇⊥ · α∇⊥〈Φn〉,
(5)

for given Φn, where n indicates the iteration index. If the
solution is converged, i.e., Φn ∼ Φn+1, Eq. 5 becomes

−∇⊥ · α∇⊥(δΦn + 〈Φn〉) + βδΦn ∼ n, (6)

which is equivalent to Eq. 1. This method is applicable
for more complicated equilibria without assuming Eq. 4.

However, the convergence may be insufficient depending
on the matrices.

In XGC, these two schemes are applied separately
to axisymmetric and non-axisymmetric parts of the field
equation. Scheme B is employed only for the axisymmet-
ric part. That is,

−∇⊥ · α∇⊥δΦn+1
N=0 + βδΦ

n+1
N=0

= nN=0 + ∇⊥ · α∇⊥〈Φn
N=0〉,

−∇⊥ · α∇⊥ΦN�0 + βΦN�0 = nN�0, (7)

where N is Fourier mode number in the toroidal direc-
tion. The first equation is purely two-dimensional and ef-
fectively converged to an axisymmetric solution. The con-
dition needed to apply scheme A to the non-axisymmetric
part,

〈∇⊥ · α∇⊥ΦN�0〉 = 〈ΦN�0〉 = 〈nN�0〉 = 0,

is satisfied also in the edge region of Tokamaks. The flux
average operator is defined along the contour lines of the
flux function. Unstructured triangular meshes on toroidal
cross-sections are employed to solve these equations. The
more accurate formulation [21]

−∇⊥ · nm
eB2
∇⊥Φ + (1 + ρ2

i ∇2
⊥)n0
δΦ

Te
= (1 + ρ2

i ∇2
⊥)n,

(8)

is also available for higher wavenumber modes, kρi ∼ 1,
where ρi is ion Larmor radius. We can apply the above
schemes to this equation in the same way.

The numerical scheme to solve the field equation
should be improved for whole-volume modeling of stel-
larators. Additional issues that have arisen in stellarators
may be as follows.

1. The field equation can not be simplified using geo-
metrical properties such as nested flux surfaces and
axial symmetry. We should obtain a solution in arbi-
trary magnetic field structures at a reasonable numer-
ical cost.

2. Neither flux coordinate nor flux function is defined in
the edge region. The unstructured meshes should be
generated without referring to them.

3. Magnetic field lines may direct away from the toroidal
direction in the edge region. The perpendicular gra-
dient operator, ∇⊥, is not defined accurately on the
toroidal cross-sections in such a case.

Concerning the second issue, a mesh generation scheme
using numerical field line tracing has been developed [17].
A finite-difference solver has been applied to the gener-
ated meshes, and a converged solution is obtained on each
toroidal cross-section. The remaining two issues are con-
sidered in the following sections separately.

3. Field Solver for General Magnetic
Field Structures
In arbitrary magnetic fields, we should solve Eq. 5 it-
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eratively without assuming axial symmetry. The solver
refers to mesh vertices on all toroidal cross sections si-
multaneously in each iteration. As a result, the solution
converges quite slowly (typically ∼ 10000 iterations in
LHD), and the resulting numerical cost can dominate the
other computations. We need to accelerate the convergence
without losing the generality of magnetic field configura-
tion.

We first consider an arbitrary density averaged on
magnetic fluxes. The density can be expended in terms of
the basis functions, 〈I〉m, defined for each magnetic flux,

〈n〉 =
M∑

m

nm〈I〉m, (9)

where m and nm stand for the index of flux and the coef-
ficient of the m-th term, respectively. M is the total num-
ber of representative flux. The basis function is defined as
Im = N0 along the m−th flux and Im = 0 in other vertices,
where N0 indicates a unit density. Electrostatic potential
resulting from each basis function is calculated by using
scheme B before starting the time step calculations. The
converged solution, Φm, satisfies

−∇⊥ · α∇⊥Φm + βδΦm = 〈I〉m. (10)

Flux-averaged component of the solution is given by the
series of potential value on each magnetic flux, 〈Φm〉 =∑M

n=1Φn,m, where Φn,m denotes the value on the n−th flux.
Therefore, the flux-averaged solution can be stored as a
M×M data array with a reasonable memory consumption.

During the simulation, the electrostatic potential for
arbitrary density profile is calculated in each time step. The
potential is separated into two parts, Φ = ΦA +ΦB, accord-
ing to the flux-averaged and fluctuation components of the
density. The field equations are

−∇⊥ · α∇⊥ΦA + βδΦA = 〈n〉, (11)

−∇⊥ · α∇⊥ΦB + βδΦB = δn. (12)

The first equation,

−∇⊥ · α∇⊥ΦA + βδΦA = 〈n〉 =
M∑

n=1

nn〈I〉n, (13)

is solved by using a linear sum of the basis potentials pre-
pared in the preprocessing. The flux-averaged component
〈ΦA〉, is given by

〈ΦA〉 =
M∑

n=1

nnΦn, (14)

and the remaining component, δΦA, is then calculated from

−∇⊥ · α∇⊥δΦA + βδΦA = 〈n〉 + ∇⊥ · α∇⊥〈ΦA〉.
(15)

This equation has only a sparse matrix, so we do not need
additional iteration. This calculation corresponds to the
final step of the iteration in scheme B.

The second equation, Eq. 12, is calculated as follows.
First, we solve the equation,

−∇⊥ · α∇⊥Φ̄B + βΦ̄B = δn, (16)

with a sparse matrix. Then we solve the additional equa-
tion for given Φ̄B,

−∇⊥ · α∇⊥Φ̃B + βδΦ̃B = β〈Φ̄B〉. (17)

This equation has a dense matrix due to δΦ̃B term. Since
RHS term is a flux-averaged value, we can obtain Φ̃B using
the basis functions of potential. The equation becomes

−∇⊥ · α∇⊥Φ̃B + βδΦ̃B = β〈Φ̄B〉 =
M∑

n=1

Bn〈I〉n, (18)

where Bn is the coefficient of the expansion of β〈Φ̄B〉 by
〈I〉n. The solution, Φ̃B, is calculated as follows.

〈Φ̃B〉 =
M∑

n=1

BnΦn,

−∇⊥ · α∇⊥δΦ̃B + βδΦ̃B = β〈Φ̄B〉 + ∇⊥ · α∇⊥〈Φ̃B〉.
(19)

The final solution is ΦB = Φ̄B + Φ̃B. If we consider Eq. 9,
basis functions of potential should be prepared for (1 +
ρ2

i ∇2⊥)〈I〉m, instead of 〈I〉m, in Eq. 10.
In the present scheme, we need to solve only three

equations with sparse matrices to obtain the solution, Φ =
ΦA + ΦB in each time step. On the other hand, we should
prepare the basis function of potential by using scheme
B. Rough estimations of computational cost are Ni × Nt

for conventional scheme B and Ni × M + 3 × Nt for the
present scheme, where Ni and Nt are numbers of iterations
in scheme B and time steps for a single complete simula-
tion, respectively. Typically Nt ∼ O(10, 000 − 100, 000) is
much larger than M ∼ O(100 − 1, 000). Therefore, numer-
ical cost will be dramatically reduced by using the present
scheme.

In comparison with scheme A, Eq. 4 is not assumed
in the present scheme. This indicates non-zero correction
terms dA and dB in

〈∇⊥ · α∇⊥Φ〉 = ∇⊥ · α∇⊥〈Φ〉 + dA,

〈∇⊥ · α∇⊥δΦ〉 = dB. (20)

Under the condition, dA = 0 or δΦA = 0, Eq. 2 (the first
equation) and Eq. 11 are reduced to Eq. 3 solved in scheme
A. The term dA originates from the relationship between
the flux-averaged potential and the fluctuation component
of density. This relationship results in LHS terms given by
δΦA in Eq. 15. Under the additional condition, dB = 0 or
〈ΦB〉 = 0, Eq. 2 (the second equation) and Eq. 12 are equiv-
alent to Eq. 3. This condition also corresponds to 〈Φ̄B〉 = 0
or Φ̃B = 0 in Eq. 17. The term dB originates from the re-
lationship between fluctuation component of potential and
flux-averaged density.
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Fig. 1 Test of the solver in the core region of LHD. (A): Pro-
file of the employed model density. (B), (C): Fluctua-
tion components of potentials obtained by (B) scheme A
and (C) scheme B. (D), (E), (F): Fluctuation components
of (D) ΦA, (E) Φ̄B and (F) Φ̃B obtained by the present
scheme.

The developed scheme is tested in the core region
of LHD. We solve the gyrokinetic Poisson equation for
a model density with flux-average and fluctuation com-
ponents. The density profile is shown in Fig. 1 (A). Fig-
ures 1 (B) and (C) show fluctuation components of poten-
tials resulting from scheme A and scheme B, respectively.
Figures 1 (D), (E) and (F) show fluctuation components of
ΦA, Φ̄B and Φ̃B resulting from the present scheme, respec-
tively. Φ̃B term is negligibly small in the present case, and
summation of ΦA and Φ̄B is almost identical to the results
of scheme B. Φ̄B itself is identical to the result of scheme
A. The potential in Fig. 1 (C) has asymmetry between high-
and low-field sides, which is not observed in the poten-
tial in Fig. 1 (B) resulting from scheme A. This structure

comes from δΦA as shown in Fig. 1 (D), or dA in Eq. 20,
neglected in scheme A. This term potentially plays an es-
sential role in simulations considering the dynamic inter-
action between micro-turbulences and global neoclassical
transport. On the other hand, the negligible terms, dB and
〈Φ〉B may become evident in open and localized magnetic
field lines in the edge region of the stellarator.

4. Optimized Curved Planes
In the edge region of stellarators, magnetic field lines

may direct away from the toroidal direction. For example,
magnetic field lines in the divertor region of LHD extend
between two helical coils [15]. Unstructured meshes on
toroidal cross-sections are not suitable to solve the field
equation with ∇⊥ operator in such a case. We construct
curved planes approximately perpendicular to the mag-
netic field by using a numerical optimization technique.

The curved planes are defined as a set of the function
φ(Rh,Zh), where φ, Rh and Zh are the toroidal angle and the
other two variables in the helical coordinates, respectively.
The helical coordinates are defined from the cylindrical co-
ordinates, (R,Z, φ), by

Rh = (R − Rax)cos(
Nturnφ

2
) − Zsin(

Nturnφ

2
) + Rax,

Zh = (R − Rax)sin(
Nturnφ

2
) − Zcos(

Nturnφ

2
), (21)

where Rax and Nturn stand for the position of the magnetic
axis and the toroidal periodicity, respectively. A uniform
φ(Rh,Zh) corresponds to the toroidal cross section. We
modify this function so that the evaluation function,

E(φ(Rh,Zh)) =
∑

m,n

|1 − (n̂ · B)/|B||, (22)

has a minimum value, where n̂ and B are plane normal
and magnetic field at the uniformly discretized mesh points
(Rh

m,Z
h
n ), respectively. Here, m and n denote the mesh in-

dices. The use of the helical coordinate prevents from es-
caping the mesh points from the vacuum vessel during the
optimization. We employ the steepest descent method to
find a direction for line search in the parameter space.

This scheme is tested in the LHD equilibrium with the
edge region. We start the optimization from constant func-
tions of φ representing the equally spaced toroidal cross-
sections. The initial plane at φ = (2π/36)/Nturn/36 is
shown in Fig. 2 (A) in the helical coordinates. Figure 2 (B)
shows the value Em,n = |(n̂ ·B)|/|B| estimated at each mesh
point. Blue and red lines indicate the last closed flux sur-
face (LCFS) and the vacuum vessel, respectively. Small
values of Em,n found away from LCFS suggest that the
magnetic field lines in the edge region are not perpendicu-
lar to the toroidal cross section. Figure 2 (C) shows the op-
timized plane. The plane is gradually distorted to minimize
the evaluation function. Figure 2 (D) shows Em,n estimated
on the optimized plane. Em,n has large values, ∼ 1, in most
regions inside the vacuum vessel. In other words, magnetic
field lines are almost perpendicular to the optimized plane.
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Fig. 2 (A): A toroidal cross section in the helical coordinates.
(B): Profile of Em,n = |n̂ · B|/|B| in the toroidal cross sec-
tion. (C): The optimized curved plane in the helical coor-
dinates. (D): Profile of Em,n calculated for the optimized
plane. Blue and red lines denote last closed flux surface
and vacuum vessel, respectively.

Fig. 3 Bird’s-eye views of the optimized planes in the toroidal
((A) and (B)) and the vertical ((C) and (D)) directions.
White and gray surfaces indicate the optimized plane. Or-
ange and blue surfaces stand for LCFS and the vacuum
vessel, respectively. We show the divertors as ribbon-like
structures bordered by red lines in (C).

Figure 3 shows three-dimensional structures of the op-
timized planes in the Cartesian coordinates. White and
gray curved planes are the optimized planes. Orange and
blue surfaces indicate LCFS and the vacuum vessel, re-
spectively. Bird’s-eye views in the toroidal and the up-
ward directions are given in Figs. 3 (A) (B) and (C) (D),
respectively. The plane-normal is approximately directed

to the toroidal direction inside LCFS. Outside LCFS, the
optimized plane is twisted vertically to follow the vessel
wall. These structures are consistent with the edge mag-
netic field in LHD [15].

5. Summary
In this paper, we present novel numerical schemes

to solve the gyrokinetic Poisson equation in stellarator
geometries by using the two-dimensional finite element
method. This equation should be solved without geo-
metrical simplifications assuming nested flux surfaces and
toroidal symmetry. The difficulty comes from flux average
and perpendicular gradient operators in the equation.

The first scheme relates to the flux average operator.
Standard matrix solvers can not solve the equation effec-
tively because this operator is represented by a dense ma-
trix. Using flux-averaged solutions prepared in the prepro-
cessing, we can obtain accurate solutions by a few calcu-
lations to solve simplified equations with sparse matrices.
This scheme is applicable to arbitrary unstructured meshes
once the flux average operator is defined.

The second scheme generates curved planes approx-
imately perpendicular to the equilibrium magnetic field
by using a numerical optimization technique. Since the
curved planes are well defined as single-valued smooth
functions, we could generate a triangular mesh on them
with standard triangulation technique [22]. The gradient
operation referring the potential values at three vertices of
each triangle element is approximately perpendicular to the
equilibrium magnetic field. These planes are effective for
solving the gyrokinetic Poisson equation especially in the
edge region of LHD where magnetic field lines direct away
from the toroidal direction.

Another issue in demonstrating plasma dynamics in
the stochastic region is the spatial resolution of simula-
tions. In the present scheme, the numbers of representative
field lines and mesh points used in the optimization affect
the resolutions of unstructured mesh and the gradient op-
erator. Some kinetic scales relevant to unstable modes and
gyro-motion may determine the required resolution. This
unsolved issue should be addressed in future kinetic simu-
lation studies on edge plasma dynamics.

We will combine these numerical techniques with
the unstructured mesh generation scheme using numeri-
cal field-line tracing [17]. Resulting mesh vertices along
field lines are useful for the flux average operation without
additional interpolations. For stochastic magnetic islands,
we may need to improve the meshing scheme with careful
field-line tracing to generate mesh vertices along closed
field lines. A field-following conversion between curved
and planar meshes is also needed to combine with the other
procedures presently using the toroidal cross sections in
XGC-S, such as particle-mesh interpolation, gyro-average
operation, and domain decomposition.
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