Plasma and Fusion Research
Volume 16, 1406070 (2021)
Regular Articles
- Happy Science University, 4427-1 Hitotsumatsu-Hei, Chosei, Chiba 299-4325, Japan
- 1)
- University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
- 2)
- Kyushu University, Fukuoka 812-8581, Japan
Abstract
The advanced oxidation of aromatic compounds in aqueous solution has been investigated using a multi-gas, dielectric barrier discharge, and the degradation rate was measured by high performance liquid chromatography (HPLC). In the degradation experiment of 2,5 - DNP, an accelerated degradation pathway was suggested in the transient state, using the molecular orbital calculation of the enhancement of the degradation of oxidation depending on the para-position of nitro-groups. From the nature-friendly technological point of view, a growth of the radish sprout in the hypo-culture was tested after the pH-neutralization of the air-plasma treated water.
Keywords
dielectric barrier discharge, aromatic compound, dinitrophenol, advanced oxidation, molecular orbital theory, Frontier Electron Theory
Full Text
References
- [1] J. Grundlingh, P. Dargan, M. El-Zanfaly and D.M. Wood, “2,4 - Dinitrophenols (DNP): A Weight Loss Agent with Significant Acute Toxicity and Risk of Death”, Journal of Medical Toxicology, Sept.; 7(3), 205 (2011) Published online 2011, July, 8. http://DOI.ORG/10.1007/s13181-011-0162-6
- [2] Update of Human Health Ambient Water Quality, Criteria: 2,4-Dinitrophenol 51-28-5, United States Environmental Protection Agency, EPA 820-R-15-086, June, 2015.
- [3] J.-Z. Gao, L. Pu, W. Yang, J. Yu and Y. Li, “Oxidative Degradation of Nitrophenols in Aqueous Solution Induced by Plasma with Submerged Glow Discharge Electrolysis”, Plasma Process and Polymer 171 (2004), http://DOI.ORG:10.02/ppap20040012
- [4] B.R. Locke, M. Sato, P. Sunka, M.R. Hoffmann and J.-S. Chang, “Electrohydraulic Discharge and Nonthermal Plasma for Water Treatment”, Industrial and Engineering Chemistry Research 45 (3), 882 (2006), http://DOI.ORG:10.1021/ie050981u
- [5] K. Katayama - Hirayama, K. Toda, A. Tauchi, A. Fujioka, T. Akitsu, H. Kaneko and K. Hirayama, “Degradation of dibromo phenols by UV irradiation”, Journal of Environmental Science 26, 184 (2014), http://DOI.ORG:10.1016/S1001-0742(13)60600-2
- [6] S. Kojima, K. Katayama - Hirayama and T. Akitsu, “Degradation of Aqueous 2, 6 - Dibromophenol Solution by In-Liquid Barrier Microplasma”, World Journal of Engineering and Technology 4, 423 (2016), http://DOI.ORG:10.4236/wjet.2016.43042/
- [7] H. Okawa, H. Kuroda, K. Katayama - Hirayama, S. Kojima and T. Akitsu, “Plasma-electrolysis of Dinitrophenol in Gas-Liquid Boundary and Interpretation using Molecular Orbital Theory”, World Journal of Engineering and Technology 7, 141 (2019), Jan 31, 2019 Online. http://DOI.ORG:10.4236/wjet.2019.71010
- [8] H. Okawa, H. Kuroda, K. Katayama - Hirayama, S. Kojima and T. Akitsu, “Plasma Degradation of Dinitrophenols and Interpretation by the Molecular Orbital Theory”, Plasma Fusion Res. 14, 3406071 (2019), http://DOI.ORG:10.1585/pfr.14.3406071
- [9] P. Lukes and B.R. Locke, “Degradation of Substituted Phenols in a Hybrid Gas-Liquid Electrical Discharge Reactor”, Industrial and Engineering Chemistry Research 44, 9, 2921 (2005), https://DOI.ORG:10.1021/ie0491342
- [10] K. Fukui, T. Yonezawa and H. Shingu, “A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons”, The Journal of Chemical Physics 20(4), 722 (1952), http://DOI.ORG:10.1063/1.1700523
- [11] I. Fleming, Frontier Orbitals and Organic Chemical Reactions (Wiley, London, 1978), 24-109, ISBN 0-471-01819-8.
- [12] Biochemical CAChe 6.0 Users Guide, 2003, Fujitsu.
- [13] K. Somekawa, Molecular Orbital Calculation of Organic Molecules and the Application (Kyushu University Press, Fukuoka, Japan, 2013) ISBN 978-4-7985-0089-8.