Plasma and Fusion Research

Volume 14, 3401070 (2019)

Regular Articles


Spatiotemporal Structure of Ionization Waves in a Glow Discharge Plasma
Takao FUKUYAMA, Kazutaka ISHIDA and Hiroki KANZAKI
Faculty of Education, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
(Received 26 December 2018 / Accepted 5 March 2019 / Published 25 April 2019)

Abstract

Spatiotemporal structures formed in ionization waves are experimentally investigated in this study. A system involving ionization waves in a discharge tube has a few degrees of freedom in time and space. In our experiment, neon plasma is produced in a glass tube by a glow discharge between electrodes after the tube is evacuated to form a high vacuum. Spatiotemporal signals for the analysis are sampled as fluctuations in the light intensity by using a line-scan camera and photodiodes. The largest Lyapunov exponents are calculated from the time-series data sampled from the line-scan camera and photodiodes. Reconnection in the spatiotemporal structure is observed, which is caused by Eckhaus instability. Topological defects in the spatiotemporal structure are observed, which result in the appearance of spatiotemporal chaos; this leads to an order structure when an electric pulse is applied to the system as an external force or when coupled oscillators are synchronized.


Keywords

glow discharge, ionization wave, chaos and periodicity, spatiotemporal structure, Eckhaus instability, synchronization, chimera state

DOI: 10.1585/pfr.14.3401070


References

  • [1] W. Boswell, Plasma Phys. Control. Fusion 27, 405 (1985).
  • [2] Y. Cheung, S. Donovan and A.Y. Wong, Phys. Rev. Lett. 61, 1360 (1988).
  • [3] N. Ohno, M. Tanaka, A. Komori and Y. Kawai, J. Phys. Soc. Jpn. 58, 28 (1989).
  • [4] T. Braun, J.A. Lisboa and J.A.C. Gallas, Phys. Rev. Lett. 68, 2770 (1992).
  • [5] M. Nurujjaman, R. Narayanan and A.N. Sekar Iyengar, Chaos 17, 043121 (2007).
  • [6] M. Novák, Czech. J. Phys. 10, 954 (1960).
  • [7] N.L. Oleson and A.W. Cooper, Adv. Electron. Electron Phys. 24, 155 (1968).
  • [8] T. Fukuyama, R. Kozakov, H. Testrich, C. Wilke and Y. Kawai, J. Plasma Fusion Res. SERIES 6, 256 (2004).
  • [9] M. Rottmann and K.H. Spatschek, J. Plasma Phys. 60, 215 (1998).
  • [10] K. Ohe and S. Takeda, Contrib. Plasma Phys. 14, 55 (1974).
  • [11] L. Sirghi, K. Ohe and G. Popa, J. Phys. D: Appl. Phys. 31, 551 (1998).
  • [12] N. Bekki, J. Phys. Soc. Jpn. 50, 659 (1981).
  • [13] T. Fukuyama and Y. Higashiura, Plasma Fusion Res. 13, 3401073 (2018).
  • [14] A. Dinklage, B. Bruhn, H. Deutsch, P. Jonas, B.-P. Koch and C. Wilke, Phys. Plasmas 5, 833 (1998).
  • [15] W. Eckhaus, Studies in Nonlinear Stability Theory (Springer, 1965).
  • [16] Th. Pierre, G. Bonhomme and A. Atipo, Phys. Rev. Lett. 76, 2290 (1996).
  • [17] T. Fukuyama and M. Okugawa, Phys. Plasmas 24, 032302 (2017).
  • [18] T.C. Lubensky, D. Pettey, N. Currier and H. Stark, Phys. Rev. E 57, 610 (1998).
  • [19] V. Yazyev and S.G. Louie, Phys. Rev. B 81, 195420 (2010).
  • [20] A. Wolf, J.B. Swift, H. L. Swinney and J.A. Vastano, Physica D 16, 285 (1985).


Publisher's Note

This article has an erratum: Takao FUKUYAMA et al., Plasma Fusion Res. 14, 3901166 (2019).