Plasma and Fusion Research

Volume 11, 1405117 (2016)

Regular Articles


Free-Surface Characteristics of a Liquid Li Wall Jet
Takuji KANEMURA, Hiroo KONDO, Hirokazu SUGIURA1), Sachiko YOSHIHASHI1), Eiji HOASHI1), Takeo MUROGA2), Tomohiro FURUKAWA, Yasushi HIRAKAWA, Eiichi WAKAI and Hiroshi HORIIKE1)
Japan Atomic Energy Agency, Oarai, Ibaraki 311-1393, Japan
1)
Osaka University, Suita, Osaka 565-0871, Japan
2)
National Institute for Fusion Science, Toki, Gifu 509-5292, Japan
(Received 20 February 2016 / Accepted 28 July 2016 / Published 31 October 2016)

Abstract

In this study, the free-surface characteristics of a liquid Li wall jet for the Li target of the International Fusion Materials Irradiation Facility (IFMIF) are comprehensively reviewed. In developing the IFMIF Li target, a scientific understanding of the free-surface wave characteristics and the development of diagnostic tools to measure these characteristics were critical issues. The same issues must be faced in other liquid metal applications in fusion engineering, such as liquid first walls or liquid diverters. Thus far, diagnostic tools and methods to measure all of the characteristics of waves (i.e., wavelength, wave period, wave speed (free-surface speed), wave height (amplitude)), and average jet thickness have been developed, and the probability distributions applicable to these wave parameters, as well as their statistical characteristic values, have been determined, validating the stability of the IFMIF Li target. Our findings, both the wave characteristics and the diagnostic tools, can be applied to not only the IFMIF Li target but also innovative liquid metal diverters or first walls in fusion engineering.


Keywords

liquid metal, Li, wall jet, flow characteristic, free surface, IFMIF, diagnostic tool

DOI: 10.1585/pfr.11.1405117


References

  • [1] T. Norimatsu et al., Fusion Sci. Technol. 56, 361 (2009).
  • [2] Z. Kawara et al., Fusion Eng. Des. 85, 2181 (2010).
  • [3] M.A. Abdou et al., Fusion Eng. Des. 54, 181 (2001).
  • [4] R.E. Nygren et al., Fusion Eng. Des. 72, 181 (2004).
  • [5] S.V. Mirnov et al., Plasma Phys. Control. Fusion 48, 821 (2006).
  • [6] S. Smolentsev et al., Fusion Eng. Des. 85, 1196 (2010).
  • [7] J. Knaster et al., Nucl. Fusion 53, 116001 (2013).
  • [8] J. Knasteret al., Nucl. Fusion 55, 086003 (2015).
  • [9] T. Kanemura et al., Fusion Eng. Des. 82, 2550 (2007).
  • [10] H. Kondo et al., Fusion Eng. Des. 85, 1102 (2010).
  • [11] T. Kanemura et al., J. Nucl. Mater. 417, 1303 (2011).
  • [12] T. Kanemura et al., Fusion Eng. Des. 86, 2462 (2011).
  • [13] T. Kanemura et al., Fusion Eng. Des. 89, 1642 (2014).
  • [14] T. Kanemura et al., Fusion Eng. Des. 98-99, 1991 (2015).
  • [15] H. Kondo et al., Fusion Eng. Des. 82, 2483 (2007).
  • [16] H. Sugiura et al., Fusion Eng. Des. 84, 1803 (2009).
  • [17] H. Sugiura et al., J. Nucl. Sci. Technol. 48, 1230 (2011).
  • [18] T. Kanemura et al., Fusion Eng. Des. (2016), doi:10.1016/j.fusengdes.2015.10.030
  • [19] N. Uda et al., J. Nucl. Sci. Technol. 38, 936 (2001).
  • [20] H. Horiike et al., Fusion Eng. Des. 66-68, 199 (2003).
  • [21] H. Nakamura et al., in: Proceedings of Eighth International Topical Meeting of Nuclear Reactor Thermal Hydraulics (NURETH-8), Volume 3, pp.1268-1275, Kyoto, Japan, September 30-October 4, 1997.
  • [22] M. Ida et al., Fusion Eng. Des. 70, 95 (2004)
  • [23] H. Kondo et al., Nucl. Fusion 51, 123008 (2011).
  • [24] H. Kondo et al., Fusion Eng. Des. 86, 2437 (2011).
  • [25] H. Kondo et al., in: Proceedings of 19th International Conference on Nuclear Engineering, ICONE19-43111, Chiba, Japan, May 16-19, 2011.
  • [26] T. Furukawa et al., Fusion Eng. Des. 86, 2433 (2011).
  • [27] T. Furukawa et al., Fusion Eng. Des. 89, 2902 (2014).
  • [28] H. Kondo et al., Fusion Eng. Des. 75-79, 865 (2005).
  • [29] K. Itoh et al., Fusion Technol. 36, 69 (1999).
  • [30] J.A. Hassberger, in: Proceedings of 10th Symposium on Fusion Engineering, Volume 2, pp.1849-1853, Philadelphia, Pennsylvania, December 5-9, 1983.
  • [31] K. Itoh et al., Fusion Technol. 37, 74 (2000).
  • [32] S. Yoshihashi-Suzuki et al., Fusion Eng. Des. 86, 2577 (2011).
  • [33] H. Kondo et al., Fusion Eng. Des. 84, 1086 (2009).
  • [34] H. Kondo et al., Fusion Eng. Des. 96-97, 117 (2015).
  • [35] H. Kondo et al., Fusion Eng. Des. (2016), doi:10.1016/j.fusengdes.2015.09.016
  • [36] L.H. Holthuijsen, Waves in Oceanic and Coastal Waters (Cambridge University Press, New York, 2007).
  • [37] T. Kitano et al., Annu. J. Coast. Eng. 54, 91 (2007) [in Japanese].
  • [38] T. Kitano et al., Annu. J. Coast. Eng. 55, 121 (2008) [in Japanese].
  • [39] S.O. Rice, Bell. Syst. Tech. J. 23, 282 (1944).
  • [40] S.O. Rice, Bell. Syst. Tech. J. 24, 46 (1945).
  • [41] M.S. Longuet-Higgins, J. Geophys. Res. 80, 2688 (1975).
  • [42] M.S. Longuet-Higgins, On the joint distribution of wave periods and amplitudes in a random wave field, Proc. Roy. Soc. Lond. A 389, 241 (1983).
  • [43] P. Stansell et al., J. Fluid Mech. 503, 273 (2004).
  • [44] A.M. Obukhov, J. Fluid Mech. 13, 77 (1962).
  • [45] A.N. Kolmogorov, J. Fluid Mech. 13, 82 (1962).
  • [46] C.R. Smith and S.P.Metzler, J. Fluid Mech. 129, 27 (1983).
  • [47] H. Lamb, Hydrodynamics (Cambridge University Press, Cambridge, Sixth edition, 1932) pp.468-471 (Art. 272).