[Table of Contents]

Plasma and Fusion Research

Volume 7, 2405127 (2012)

Regular Articles


Microstructure of Oxide Insulator Coating before and after Thermal Cycling Test
Yoshimitsu HISHINUMA, Satoshi MURAKAMI1), Kenji MATSUDA1), Tsutomu TANAKA2), Yuzo TASAKI2), Teruya TANAKA, Takuya NAGASAKA, Akio SAGARA and Takeo MUROGA
National Institute for Fusion Science, Toki, Gifu 509-5292, Japan
1)
University of Toyama, Toyama 930-0877, Japan
2)
Toshima MFG. Co.,Ltd, Higashi-matsuyama, Saitama, Japan
(Received 9 December 2011 / Accepted 19 April 2012 / Published 13 September 2012)

Abstract

Erbium oxide (Er2O3) was shown to be a high potential candidate for tritium permeation barrier and electrical insulator coating for advanced breeding blanket systems such as liquid Li, Li-Pb or molten-salt blankets. Recently, we succeeded to form Er2O3 coating layer on large interior surface area of metal pipe using Metal Organic Chemical Vapor Deposition (MOCVD) process. In this paper, we investigated the microstructure of Er2O3 coating layer on stainless steel 316 (SUS 316) plate before and after heat treatments with hydrogen or argon gases. From the results of TEM observations, we confirmed that Er2O3 coating layer with 700 nm thickness was formed on the SUS 316 plate and this layer was identified to poly-crystal phase because the diffraction fleck which was arranged like a ring was observed in the selected electron diffraction pattern. No macroscopic defects such as crack and peeling in Er2O3 coating layer were observed before and after thermal cycling test. The change of microstructure of the Er2O3 coating layer on before and after heat cycling test was reported.


Keywords

blanket system, Er2O3, MOCVD coating, heat cycling, TEM observation

DOI: 10.1585/pfr.7.2405127


References

  • [1] S. Malang, H.U. Borgstedt, E.H. Farnum, K. Natesan and I.V. Vitkovski, Fusion Eng. Des. 27, 570 (1995).
  • [2] T. Muroga, T. Tanaka and A. Sagara, Fusion Eng. Des. 81, 1203 (2006).
  • [3] D.L. Smith, J. Konys, T. Muroga and V. Evtikhin, J. Nucl. Mater. 307-311, 1314 (2002).
  • [4] B.A. Pint, P.F. Tortorelli, A. Jankowski, J. Hayes, T. Muroga, A. Suzuki, O.I. Yeliseyeva and V.M. Chernov, J. Nucl. Mater. 329-333, 119 (2004).
  • [5] A. Sawada, A. Suzuki, H. Maier, F. Koch, T. Terai and T. Muroga, Fusion Eng. Des. 75-79, 737 (2005).
  • [6] Y. Hishinuma, T. Tanaka, T. Tanaka, T. Nagasaka, S. Yoshizawa, Y. Tasaki and T. Muroga, J. Nucl. Mater. 417, 1214 (2011).
  • [7] Y. Hishinuma, T. Tanaka, T. Tanaka, T. Nagasaka, Y. Tasaki, A. Sagara and T. Muroga, Fusion Eng. Des. 86, 2530 (2011).
  • [8] Y. Hishinuma, T. Tanaka, T. Tanaka, T. Nagasaka, Y. Tasaki, S. Murakami, K. Matsuda, A. Sagara and T. Muroga, Fusion Sci. Technol. 60, 1131 (2011).
  • [9] D. Zhang, T. Tanaka and T. Muroga, J. Nucl. Mater. 417, 1249 (2011).
  • [10] T. Tanaka, T. Muroga, D. Zhang and T. Nagai, Annual Report of National Institute for Fusion Science, Apr.2009-Mar.2010, 451 (2010).

This paper may be cited as follows:

Yoshimitsu HISHINUMA, Satoshi MURAKAMI, Kenji MATSUDA, Tsutomu TANAKA, Yuzo TASAKI, Teruya TANAKA, Takuya NAGASAKA, Akio SAGARA and Takeo MUROGA, Plasma Fusion Res. 7, 2405127 (2012).