Plasma and Fusion Research
Volume 3, S1062 (2008)
Regular Articles
- 1)
- National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan
- 2)
- Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Japan
Abstract
The progress in a 3-dimensional, non-local neoclassical transport simulation code “FORTEC-3D” is described. The main purpose of the code is to solve the drift-kinetic equation in general a 3-dimensional configuration using the δf Monte Carlo method, and to calculate neoclassical fluxes and the time evolution of the ambipolar radial electric field simultaneously. This article explains new numerical schemes adopted in FORTEC-3D in order to overcome numerical problems, which happen especially in the cases where the bifurcation of radial electric field occurs. Examples of test simulation for an LHD magnetic field configuration with a bifurcated electric field are also shown. With improved numerical schemes, FORTEC-3D can calculate neoclassical fluxes and trace the time evolution stably for several ion collision times, which is sufficiently long to observe GAM damping and formation of the ambipolar electric field.
Keywords
neoclassical transport, helical configuration, the δf method, Monte-Carlo simulation, ambipolar radial electric field
Full Text
References
- [1] D.E. Hastings et al., Nucl. Fusion 25, 445 (1985).
- [2] R. Kanno et al., Nucl. Fusion 37, 1463 (1997).
- [3] N. Nakajima et al., J. Phys. Soc. Japan 61, 833 (1992).
- [4] M. Wakatani, Stellarators and Heliotron Devices (Oxford Univ. Press, 1998), Chap. 7.
- [5] P. Helander, Phys. Plasmas 7, 2878 (2000).
- [6] S. Satake et al., Phys. Plasmas 9, 3946 (2002) .
- [7] K. Nagaoka et al., “Ion Heating Experiments Using Perpendicular Neutral Beam Injection in the Large Helical Device,” Proceedings of Joint Conf. ITC17 and ISHW16, O-11 (2007).
- [8] N. Winsor et al., Phys. Fluids 11, 2448 (1968).
- [9] S. Satake et al., Plasma Fusion Res. 1, 002 (2006).
- [10] S. Satake et al., Nucl. Fusion 45, 1362 (2005).
- [11] S. Satake et al., Nucl. Fusion 47, 1258 (2007).
- [12] W.X. Wang et al., Plasma Phys. Control. Fusion 41, 1091 (1999).
- [13] S. Brunner et al., Phys. Plasmas 6, 4504 (1999).
- [14] W.X. Wang et al., Phys. Plasmas 13, 082501 (2006).
- [15] J.L. Lewandowski et al., Phys. Plasmas 8, 2849 (2001).
- [16] M. Yu. Isaev et al., Fusion Sci. Technol. 50, 440 (2006).
- [17] C.D. Beidler et al., Plasma Phys. Control. Fusion 43, 1131 (2001).
- [18] S.P. Hirshman et al., J. Comput. Phys. 96, 99 (1991).
- [19] A.H. Boozer, Phys. Fluids 23, 904 (1980).
- [20] Z. Lin et al., Phys. Plasmas 2, 2975 (1995).
- [21] C.K. Birdsall et al., Plasma Physics via Computer Simulation (Inst. Phys. Pub., 1991), Chap. 4.
- [22] D.E. Hastings Phys. Fluids 28, 334 (1985).
- [23] S. Toda and K. Itoh, Plasma Phys. Control. Fusion 46, 1039 (2004).
- [24] M. Sasinowski and A.H. Boozer, Phys. Plasmas 2, 610 (1995).
- [25] A. Bergmann et al., Phys. Plasmas 12, 5192 (2001). S1062-10
This paper may be cited as follows:
Shinsuke SATAKE, Ryutaro KANNO and Hideo SUGAMA, Plasma Fusion Res. 3, S1062 (2008).