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The progress in a 3-dimensional, non-local neoclassical transport simulation code “FORTEC-3D” is de-
scribed. The main purpose of the code is to solve the drift-kinetic equation in general a 3-dimensional configura-
tion using the δ f Monte Carlo method, and to calculate neoclassical fluxes and the time evolution of the ambipolar
radial electric field simultaneously. This article explains new numerical schemes adopted in FORTEC-3D in or-
der to overcome numerical problems, which happen especially in the cases where the bifurcation of radial electric
field occurs. Examples of test simulation for an LHD magnetic field configuration with a bifurcated electric field
are also shown. With improved numerical schemes, FORTEC-3D can calculate neoclassical fluxes and trace the
time evolution stably for several ion collision times, which is sufficiently long to observe GAM damping and
formation of the ambipolar electric field.
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1. Introduction
Detailed calculation of neoclassical transport in

3-dimensional configuration plasmas such as Large He-
lical Device (LHD) is important for transport analysis,
since in a 3-dimensional system, the ambipolar condition
Γi(ρ, Eρ) = Γe(ρ, Eρ) determines the radial electric field
profile Eρ(ρ), where Γi and Γe are ion and electron particle
fluxes across the flux-surface ρ =const. It is known that the
ambipolar condition is determined mainly by neoclassical
transport. If the ambipolar condition has multiple roots, bi-
furcation of radial electric field profile occurs [1]. In LHD
plasmas, appearance of positive electric field, the “elec-
tron root,” is preferable since it reduces neoclassical trans-
port compared with that in negative one, the “ion root” [2].
Moreover, strongly sheared electric field profile at the tran-
sition layer is generally considered to be favorable from the
viewpoint of suppression of anomalous transport.

Neoclassical transport theory for a 3-dimensional he-
lical configuration [3,4] has been constructed under the as-
sumption of local transport model, where the typical orbit
width in the minor-radius direction is assumed to be negli-
gible compared with the background gradient scale lengths
of a plasma. Recently, non-local or finite-orbit-width
(FOW) effects on neoclassical transport have attracted at-
tention in the analysis of core transport in tokamaks. There
appear potato particles with large orbit widths, and these
particles violate the assumption of conventional neoclas-
sical theory [5, 6]. In helical configurations, the deeply
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ripple-trapped and transition particles drift long distance
in radial directions. The FOW effect of these orbits will
be important in neoclassical transport analysis, if the ion
temperature at the core is high and the collisionality be-
comes very low, as in the high-Ti operation in LHD [7]. On
the other hand, radial drift motion of particle is restricted
in the presence of E × B rotation. Further the change in
particle drift in turn affects the ambipolar condition. The
presence of a strong-sheared electric field will also cause a
non-local effect to neoclassical transport. Thus, it is impor-
tant to solve both neoclassical transport and formation of
ambipolar radial electric field self-consistently and simul-
taneously, with the FOW effects taken into consideration.
However, the applicability of analytic neoclassical theory
to this issue is questionable since it neglects the FOW ef-
fect from the beginning. It should also be pointed out that
most of the conventional neoclassical transport theory and
analytic formulae assume the quasi-stationary state. Thus,
they are not applicable for tracing the rapid time evolu-
tion of radial electric field as fast as particle transit time
τtr ∼ qR/vth, similar to the case of the geodesic acoustic
mode (GAM) [8].

From the considerations above, we have been devel-
oping a simulation code to solve the drift-kinetic equa-
tion (DKE) including the FOW effect in a 3-dimensional
configuration. The simulation code, FORTEC-3D [9–11],
uses the δ f Monte Carlo method [12, 13], which has been
applied in some other transport codes both for tokamaks
[14] and for helical configurations [15, 16]. The features
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of FORTEC-3D are as follows: (1) It uses a conserved-
form linearized Fokker-Planck collision operator. (2) It is
a global simulation code. The entire confinement region
is solved at once. (3) Time evolution of the radial electric
field is solved simultaneously. The ambipolar electric field
is then determined in consistency with neoclassical fluxes.
To reduce calculation time for practical use, only ion trans-
port is solved by the δ f method, and electron transport is
solved by the GSRAKE code [17], which solves bounce-
averaged DKE. Note that the GSRAKE solution does not
include the FOW effect, and then only the non-local effect
for ions transport is treated in FORTEC-3D.

So far FORTEC-3D has been applied successfully for
LHD configurations to solve the formation of ambipolar
field for ion roots [9], and to study the configuration depen-
dence and the FOW effect of GAM oscillation and damp-
ing [10, 11]. However, from several test calculations, we
found it difficult to apply FORTEC-3D to the cases with
electron roots, since the bifurcated radial electric field pro-
file attained an unphysical shape as shown later. We also
found that the numerical noise in particle flux and the nu-
merical error in collision operator were intolerably large,
which had not been found in tokamak cases. We ascer-
tained that these problems resulted from inaccuracy in the
way of using radial grids to evaluate flux and electric field,
and from the emergence of huge-weight markers caused
by large radial drift from the initial position. Both points
should be treated carefully in transport simulations where
the non-local nature of neoclassical transport is important.

In this paper, improvements for numerical schemes in
FORTEC-3D applied recently to overcome the problems
above are explained. In section 2, basic equations for the
δ f Monte Carlo method are reviewed. In section 3, modifi-
cation of collision operator is described. The new operator
has good conservation property with less marker numbers.
In section 4, improvement in the evaluation of flux and
electric field are explained. Adoption of staggered mesh
in radial direction to evaluate these two quantities enables
simulation of the formation of bifurcated radial electric
field profile stably. In section 5, new filtering scheme for
marker weights to reduce numerical noise is introduced.
By comparing several tests with varied strength of filters,
it is shown that the filtering scheme does not affect the so-
lutions. As a result of these improvements, FORTEC-3D
is ready to solve neoclassical transport in helical plasmas
in varied profiles and simulate evolution of electric fields
including bifurcations.

2. Basic Equations of the δ f Method
In the δ f method, time development of the perturba-

tion of guiding-center distribution function from the back-
ground local Maxwellian δ f = f − fM is solved according
to the following drift-kinetic equation [10]

D
Dt
δ f (X,K , µ, t) ≡ ∂δ f

∂t
+

(
u‖ + ud

) · ∇δ f

+ K̇ ∂δ f
∂K − Ctp(δ f )

= −
(
ud · ∇ fM + K̇ ∂ fM

∂K
)
+ P fM, (1)

where Ctp andP are the test-particle and field-particle parts
of the linearized collision operator, respectively. Here, ki-
netic energy K = mv2/2 is chosen as an independent vari-
able instead of the total energy E = K + eΦ to describe
DKE, since we allow an electrostatic potential Φ that de-
pends on time. The magnetic moment µ = mv⊥/2B is
a constant of motion, and the term µ̇∂/∂µ does not ap-
pear in Eq. (1). An MHD equilibrium magnetic field is
constructed from the VMEC code [18], and it is sent to
FORTEC-3D in the Boozer coordinate system (ψ, θ, ζ) [19]
as B = ∇ψ×∇θ+ ι∇ζ×∇ψ. In practice, we use ρ for a nor-
malized radial coordinate defined from toroidal flux ψ as
ρ =

√
ψ/ψout. The background temperature, density, and

electrostatic potential are considered as flux-surface func-
tions, thus fM = fM(ρ,K). The time evolution of radial
electric field E = − (dΦ/dρ)∇ρ = Eρ∇ρ is solved from the
following equations

ε0ε⊥
∂Eρ

∂t
= −e [ziΓi − Γe] , (2a)

Γi,e =

〈∫
d3vud · ∇ρ δ fi,e

〉
, (2b)

where subscripts i and e describe particle species, 〈· · · 〉
indicates a flux-surface average, and the factor ε⊥ ≡[〈
|∇ρ|2

〉
+

〈
c2|∇ρ|2

〉
/v2

A

]
represents the permittivity, which

includes the classical polarization drift effect.
To solve Eq. (1), two weights for simulation markers,

w and p, are introduced, which satisfy the relations wg =
δ f and pg = fM, respectively, where g is 5-dimensional
simulation marker distribution function. Since D/Dt in-
dicates the derivative along the guiding-center motion in
the phase space (ρ, θ, ζ,K , µ) including the random-walk
in velocity space by Ctp operator, we have Dg/Dt = 0.
Then the time evolution of marker weights is given by

Dw
Dt
=

p
fM

[
−ud · ∇ − K̇ ∂

∂K + P
]

fM, (3a)

Dp
Dt
=

p
fM

[
ud · ∇ + K̇ ∂

∂K
]

fM. (3b)

The numerical procedures for the collision operator and for
Eqs. (2) are described in the following sections.

3. Collision Operator
The linearized Fokker-Planck operator in FORTEC-

3D is made to satisfy the following relations [20],∫
d3vM

(
Ctp(δ f ) + P fM

)
= 0 for M = {1, v‖, v2},

(4)

Ctp(δ f ) + P fM = 0 for δ f = (c0 + c1 · u + c2v
2) fM.

(5)
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The test-particle operator Ctp is expressed by random scat-
tering of marker velocity in the (v‖, v⊥)-space. The field-
particle operator is given in following form

P = −1
n
[
aF(x) + bG(x)ξ + cH(x)

]
, (6a)

F(x) = 1 − 3
√
π

2
x−1/2

(
φ(x) − dφ(x)

dx

)
, (6b)

G(x) = 3
√
π

2
x−1φ(x), (6c)

H(x) = 3
√
π

2
x−1/2

(
φ(x) − dφ(x)

dx

)
, (6d)

where x ≡ v2/v2
th, ξ ≡ v‖/v, φ(x) =

(
2/
√
π
) ∫ x

0 dt exp−t
√

t is
the error function, and n and vth are the density and temper-
ature of background fM, respectively. The factors (a, b, c)
are determined so that the field-particle operator P fM can-
cels the changes in constants of motions by Ctp, e.g.,

{δn, δP, δE} =
∫

d3v
{
1, v‖, v2

}
Ctp(δ f ). (7)

In the ideal limit where the relations wg = δ f and pg =
fM are strictly satisfied, these factors are determined as
(a, b, c) = (δn, 2δP/vth, 2δE/(3v2

th)) using Eq. (4). Note
that the test-particle operator itself never changes the num-
ber of particles. However, after a series of operations of
test- and field-particle operators, there still remains numer-
ical error in constants of motions, including δn. To reduce
the error, in the previous FORTEC-3D code, the remaining
errors after (i − 1) times operation of P fM

{δn, δP, δE}i =
∫

d3v
{
1, v‖, v2

} ⎡⎢⎢⎢⎢⎢⎢⎣Ctp(δ f ) +
i−1∑
k=0

Pk fM

⎤⎥⎥⎥⎥⎥⎥⎦
are evaluated, and then i-th field-particle operation to
marker weight dw/dt = p×Pi is executed again [12]. This
recursive procedure has worked well to reduce numerical
error with 2- or 3- time recursive operations in previous
tokamak simulation. However, it was found that the nu-
merical error in the conservation law (4) becomes larger in
3-dimensional helical configuration cases. In helical cases,
it is difficult to maintain sufficient marker population in a
unit volume, and the marker distribution g is distorted in
the velocity space in the presence of ripple-trapped par-
ticles, which result in deterioration in the expression of
plasma distribution functions δ f and fM with finite mark-
ers. This also causes large differences in moments of P fM
between the theoretical values (

∫
d3vF(x) fM) and those

evaluated by finite markers (
∫

d3vF(x) fM 
 ∑
k F(xk)pk)

where k is the index of a marker. In implementation,
this difference results in bad convergence of the recursive
method, in which the theoretical values are used to deter-
mine the factors (a, b, c). In the improved version, we do
not use these theoretical values to make P fM, but the fac-
tors (a, b, c) are determined at every operation of collision
term so that the conservation law is strictly satisfied. By

substituting Eqs. (6) and (7) in (4), we have

∑
k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Fk pk Gkξk pk Hk pk

Fk x1/2
k ξk pk Gk x1/2

k ξ2
k pk Hk x1/2

k ξk pk

Fk xk pk Gk xkξk pk Hk xk pk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
b
c

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = −
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δn
δP/vth

δE/v2
th

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (8)

where abbreviations Fk = F(xk) and so on are used. In the
limit of infinite number of markers, these factors should
converge to their theoretical values.

As a test, a series of calculations with old and new
field-particle operators were carried out. In Fig. 1, the
residual relative errors in momentum and energy arising
at an operation of Ctp +P fM are compared between the old
and new P fM with varied marker numbers. In this test, the
configuration space is neglected and only the collision op-
erators in the velocity space are solved with initial δ f given
in the form of Eq. (5). Here, the relative residual error in
momentum is evaluated as

∆P =

∫
d3vv‖[Ctp(δ f ) + P fM]∫

d3vv‖δ f
,

and the residual error in energy ∆E is evaluated similarly.
In the tests of old scheme, 3-time recursive operations of
P fM are used. In the old scheme, one can see that the nu-
merical error is larger for the fewer-marker case. In the
real simulation including configuration dependence and
trapped particles, the error in the old operator is larger, and
it is difficult to prepare enough markers to converge the er-
ror. On the other hand, the error in the new operator is
just at the rounding-error level, even in the 1600-markers

Fig. 1 Relative residual error in momentum and energy in one
operation of Ctp+P fM. The time interval for the collision
operation ∆t = 2× 10−3τii, and 200 samples are extracted
for each test.
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calculation. We have also confirmed the other property
of the collision operator is also maintained in the new
operator, i.e., the initial δ f distribution given by Eq. (5)
sustained its shape longer than the ion-ion collision time.
Thus, the new field-particle operator shows better accuracy
with less markers without changing its properties, which a
proper linearized collision should hold, i.e., Eqs. (4) and
(5). Although it is required to solve 3× 3 matrices at every
time step in the new scheme, the total computation time is
shorter than that in the old recursive scheme.

4. Radial Meshes
The relation between neoclassical fluxes and radial

electric field is solved on discrete meshes in the ρ-
coordinate. Γi is evaluated using the volume averaged
value between i-th and (i + 1)-th meshes as follows

Γ̄i(ρi+ 1
2
) =

1
∆Vi+1/2

∫
∆Vi+1/2

d3x
∫

d3vρ̇δ f

=
1

∆Vi+1/2

∑
{k|ρi≤ρk<ρi+1}

wkρ̇kC(ρk, i), (9)

where the over-bar denotes an average value, k is the
marker index, ∆Vi+1/2 is volume enclosed by ρ = ρi and
ρi+1 surfaces, and C(ρk, i) is the shaping factor of a marker
[21]. We have adopted a two-mesh wide triangle shap-
ing factor to reduce spikes in Γi, which occurs when a
large-weight marker goes across the grid. For electron
flux, local value from the GSRAKE solution is referred
to : Γe(ρi+1/2) = Γe(ρi+1/2, Eρ(ρi+1/2, t)). Previously, the
electric field was evaluated on the same point ρ = ρi+1/2

as Γi and Γe according to Eq. (2a). It is illustrated in the
left hand side of Fig. 2. However, using this scheme, we
found that the electric field profile attained an unphysi-
cal shape as shown in Fig. 3 with dashed blue line, where
multiple roots for ambipolar condition are expected from
GSRAKE solutions. Note that the radial electric field is

converted using the relation Er[V/m] = (1/a)Eρ in Fig. 3.
This is a test calculation using an LHD model configu-
ration for the low-collisionality condition. The magnetic
field strength at the magnetic axis is B0 = 1.65 T, the ma-
jor radius is Rax = 3.7 m, and the average minor radius
is a = 0.58 m. The density, temperature, and rotational
transform profiles are given as shown in Fig. 4. It is typical
for LHD plasma to have multiple roots when Te exceeds
Ti. The GSRAKE solution both for Γi and Γe are used
to estimate the ambipolar radial electric field that satisfies
Γi(ρ, Eρ) = Γe(ρ, Eρ), which is also plotted in Fig. 3. The
Eρ-profile obtained from the previous FORTEC-3D code
neither connected ion-root to electron-root smoothly nor
settled in a value guessed by GSRAKE. Mathematically, it
is not an easy problem to obtain a continuous Eρ-profile
that satisfies the ambipolar condition Γi = Γe point by
point, if there are multiple roots for the ambipolar condi-
tion. A general way to solve this bifurcation problem is to
introduce “electric field diffusivity” into Eq. (2a) as follows

ε0ε⊥
∂Eρ

∂t
= −e [ziΓi − Γe] +

1
V ′

∂

∂ρ

(
V ′DE

dEρ

dρ

)
,

(10)

where V ′ = dV/dρ. The diffusion coefficient DE either ac-
counts for a higher-order correction to neoclassical trans-
port due to the FOW effect in the presence of strong shear
of the radial electric field around the transition layer from
positive to negative root [22], or uses an empirical model
of anomalous diffusion [23]. However, we do not employ
this method in FORTEC-3D because of the following rea-
sons: First, higher-order correction on ion neoclassical flux
due to the FOW effect is already evaluated in Eq. (9) prop-
erly, since we trace the exact particle orbits in the pres-
ence of strong radial shear of Eρ. Second, the FOW ef-
fect on electron neoclassical flux is negligible since the
typical orbit width of electrons is ∼ √me/mi times thin-
ner than the ion one. Then GSRAKE solution based on a

(old)
(new)

Fig. 2 Illustrations for radial meshes and positions on which fluxes and electric field are evaluated in old and new schemes.
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Fig. 3 Comparison of electric field profile between the old and
new schemes for flux and electric field with different ra-
dial mesh numbers, at the time t/τi = 1.285. Squares are
estimations of ambipolar field from GSRAKE.

Fig. 4 Density, temperature, and rotational transform profiles
obtained in the test simulations.

local transport theory is considered reasonable at least to
explain electron transport even in the presence of strong
Eρ-shear at the transition layer. Third, it is known that the
width of the transition layer connecting ion and electron
roots is proportional to

√
DE and usually the anomalous

electric diffusivity is assumed to be much larger than the
neoclassical one [23]. Therefore, it is not proper to in-
troduce such a parameter that controls the radial gradient
scale into FORTEC-3D, with which we aim to study non-
local effects in transport phenomena within the framework
of the drift-kinetic equation.

Instead of introducing a diffusion term to avoid
numerical difficulty in solving Eq. (2a), we solve this prob-

lem by improving the numerical method itself in FORTEC-
3D. The unphysical bifurcation in previous calculations
seems to have been caused by an improper numerical
scheme to solve Eρ-profile in the global simulation, where
the time evolution of Eρ was determined only by Γi,e eval-
uated on the same mesh. Therefore, we adopted a new
scheme that uses staggered-mesh for Eρ and Γi,e, as illus-
trated in the right hand side of Fig. 2. Fluxes are evaluated
on half-grids ρ = ρi±1/2 and time evolution of Eρ(ρi) is
calculated on the full-grids as follows

ε0ε⊥
∂Eρ(ρi)
∂t

= −e
[
zi

¯̄Γi(ρi) − Γ̄e(ρi)
]
, (11)

where ¯̄Γi(ρi) and Γ̄e(ρi) are averaged values of those eval-
uated at ρ = ρi±1/2 determined in the following way. First,
note that the volume-averaged flux around ρ = ρi grid is
given by

Γ̄(ρi) =
1
∆Vi

∫ ρi+ 1
2

ρi− 1
2

dρ V ′Γ(ρ) =
1
∆Vi

∫ V(ρi+1/2)

V(ρi−1/2)
dV Γ(V),

(12)

where the subscript i or e for particle species is omitted
here. In computation, we do not know the true value of the
flux Γ(V), but by expanding Γ(V) around Vi = V(ρi), one
finds that the accuracy of the above expression is

Γ̄(Vi) = Γ(Vi) +
∆V+i

2 − ∆V−i
2

2∆Vi

dΓ
dV

∣∣∣∣∣
Vi

+ · · ·

= Γ(Vi) +
∆V+i − ∆V−i

2
dΓ
dV

∣∣∣∣∣
Vi

+ · · ·

= Γ(Vi)
[
1 + O

(
∆ρ2V ′′

Γ

dΓ
dV

)]
, (13)

where ∆V±i = ±(Vi±1/2 − Vi), ∆V+i + ∆V−i = ∆Vi and order
estimation ∆V+i − ∆V−i ∼ ∆ρ2V ′′i is used. Note here that
∆V+i − ∆V−i � 0, since we take uniform mesh not in V , but
in ρ. Next, for the staggered-mesh scheme, we consider a
linear interpolation of Γ(Vi)) as a function of V as follows

Γ(Vi) =
1
∆Vi

[
∆V+i Γ(Vi−1/2) + ∆V−i Γ(Vi+1/2)

]

×
[
1 + O

(
∆V2

Γ

d2Γ

dV2

)]
, (14)

In order to introduce a smoothing effect in evaluating flux,
however, we do not simply replace Γ(Vi±1/2) in Eq. (14)
with Γ̄(ρi±1/2) but assume that the ion flux Γi(ρi) can be
approximated by ¯̄Γi(ρi) defined as follows

¯̄Γi(ρi) =
[
Wi−Γ̄i(ρi−1/2) +Wi+Γ̄i(ρi+1/2)

]
, (15)

with these two constraints to determine the weight factors
Wi±,

Wi+ +Wi− = 1. (16a)

If V ′i−1/2Γ̄(ρi−1/2) = V ′i+1/2Γ̄(ρi+1/2) = C,

then V ′i ¯̄Γ(ρi) = C. (16b)
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Note that the double-over-bar means that ¯̄Γ(ρi) is an aver-
age value of the volume-average values Γ̄(ρi±1/2). The first
constraint means that this average is a linear interpolation
similar to Eq. (14), and the second constraint comes from
the consideration that V ′Γ(ρ) is the total particle number
passing across the ρ = const. surface in unit time. The lat-
ter is a continuity condition for flux, which serves to avoid
virtual accumulation or diffusion of particles in the volume
∆Vi when the particle flux passing through both sides of the
volume are balanced. Equation (16) can be solved for Wi±
and we have

Wi+ =
V ′i+1/2

V ′i
· (V ′i − V ′i−1/2)

(V ′i+1/2 − V ′i−1/2)
, (17a)

Wi− =
V ′i−1/2

V ′i
· (V ′i+1/2 − V ′i )

(V ′i+1/2 − V ′i−1/2)
. (17b)

While ¯̄Γi(ρi) is evaluated from non-local information in
the range ρi−1 ≤ ρ ≤ ρi+1, the width of the shaping fac-
tor is shrunk half than in the previous scheme in order to
avoid too much non-locality being included in the evalua-
tion of ¯̄Γi(ρi), as illustrated in the right hand side of Fig. 2.
It is found that the ratio of the weights are close to that
appearing in Eq. (14), that is, Wi− : Wi+ 
 ∆V+i : ∆V−i .
The proof is shown in the Appendix. Therefore, Eq. (15)
properly provides a linear interpolation of Γ at V = V(ρi)
from Γ̄(V(ρi−1/2)) and Γ̄(V(ρi+1/2)) with an additional con-
straint Eq. (16b) for numerical stability. Moreover, since
Wi− 
 Wi+ 
 1/2 and Eq. (15) can be rewritten as

¯̄Γ(ρi) 
 Γ̄(ρi) +
1
2

[
Γ̄(ρi+1/2) + Γ̄(ρi−1/2) − 2Γ̄(ρi)

]


 Γ̄(ρi) +
∆ρ2

2
d2Γ̄(ρi)

dρ2 ,

the evaluation of fluxes according to Eq. (15) brings a nu-
merical diffusion to ¯̄Γ, which is also thought to stabilize the
time evolution of radial electric field. For electrons, aver-
age value Γ̄e(ρi) is evaluated in the same way as for ions
from GSRAKE solutions at ρ = ρi±1/2 as follows

Γ̄e(ρi) =
[
Wi−Γe(ρi−1/2, Eρ(ρi−1/2))

+Wi+Γe(ρi+1/2, Eρ(ρi+1/2))
]
, (18)

where Γe-s on the right side are not the volume-average
values Γ̄e since GSRAKE solutions are given as local val-
ues based on the local transport theory.

With this new scheme, FORTEC-3D can simulate
continuous transition both in time and space from ion- to
electron-root as shown in Fig. 3 with red and green lines.
The same configuration as in the old simulation was used.
It is to be noted that the number of radial meshes in the
new simulations is 60 (red) or 30 (green), while it was 40
(blue) for the old simulation. However, we had already
attempted a 80-mesh calculation with old scheme, which
have resulted in a similar unphysical Eρ-profile. There-
fore, it is not because the radial resolution was not suf-
ficient to express the transition layer of Eρ that the previ-
ous FORTEC-3D failed in solving bifurcated state of radial

electric field. In contrast, using the new scheme, the Eρ-
profile shows a smooth and continuous transition between
ion and electron roots, and the width of the transition layer
is not affected by the radial mesh size. The transition layer
width in Fig. 2 is about 0.15, and the mesh size ∆ρ = 1/30
or 1/60 is then sufficiently small to mask the effect of nu-
merical diffusion in the formation and propagation of the
layer. As it is shown in the Appendix, the new scheme has
the same accuracy as the previous one, judging from the
order estimation. In the new scheme, however, existence
of the radial gradient Γ(ρ) is taken into consideration to
evaluate ¯̄Γ based on the linear interpolation Eq. (14) with a
subsidiary condition Eq. (16b) for numerical stability, and
it is considered that the staggered-meshes to evaluate the
average flux and time evolution of the electric field, along
with the numerical diffusion effect within, serves to obtain
smooth transition in the simulation. Note that the radial
electric field profile of the new scheme was obtained at a
moment when it was transiting from negative to positive
root. The time evolution of the electric field profile toward
a quasi-steady state is shown in the next section.

5. Filtration
Reducing the numerical noise without relying on a

massive number of markers is essential to any Monte-Carlo
simulation. In the δ f method, the origin of big noise is
from markers that have huge weights w or p. Let us re-
consider the equation of particle weights Eq. (3) to under-
stand the origin of huge-weight markers. If collisions are
neglected, Eq. (3b) can be rewritten as follows

d ln p
dt
=

dρ
dt

∂

∂ρ
ln fM(ρ,K) +

dK
dt

∂

∂K ln fM(ρ,K),

⇔ d ln p = d ln fM(ρ,K), (19)

where dρ/dt = ud · ∇ρ. Then the marker weights can be
determined as

p1 = p0
n1

n0

(
T0

T1

)3/2

exp
[
−K1

T1
+
K0

T0

]
, (20a)

w1 = w0 − (p1 − p0), (20b)

where subscript 0 and 1 represents the values of them on
marker’s position at the time t = t0 and t1. In practice,
the change of weights by marker’s guiding-center motion
is determined using the relation above, since it does not
need to evaluate any derivatives numerically. Moreover, it
is a positivity-preserving scheme for p if the initial value
p0 is positive. From Eqs. (20), it is realized that markers
that travel long distance in radial directions will have large
marker weights since n and T always have gradient in
the ρ-direction. In contrast to axisymmetric tokamaks,
in which time-average radial position of a particle do
not drift in the collisionless limit, it is inevitable to have
such large-drift particles in helical plasmas, especially
in low-collisionality cases. Therefore we need to set
limits for weight values. In reality, we found that only
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Table 1 Filter strengths and marker numbers used in test simula-
tions.

p |w|/p v/vth marker num.
old - 2.0 5.0 3.84 × 107

filter 1 5 2.0 4.5 3.84 × 107

filter 2 8 2.5 4.5 3.84 × 107

filter 3 10 2.5 4.5 1.28 × 107

filter 4 25 4.0 4.5 1.92 × 107

filter 5 10 10.0 4.5 1.92 × 107

Fig. 5 Comparison of electric field profiles between old and new
schemes for different filters at three periods. Plotting
points are reduced to 20 here, although Er is evaluated
at 60 points in the simulations.

less than 0.1% of simulation markers have huge weights
p1 ∼ |w1| � 102 ∼ 103 p0, and these markers make the

Fig. 6 Comparison of radial profile of the radial ion particle and
energy fluxes among different filters at time steps be-
tween 6000 to 6500, when the radial electric field almost
reaches the quasi-steady state.

calculation very noisy and unstable. To exclude the noise,
we apply filters for marker weights by setting limits for
|w|/p, v/vth, and p. The first limiter follows from the as-
sumption in the δ f method that |δ f |/ fM � 1, and the sec-
ond limiter is adopted because fast ions tend to have large
orbit widths and drift velocity. The third one was intro-
duced after we have found that the huge-|w| markers could
not be eliminated effectively only by the first filter, but
from Eq. (20b) it is expected that large |w| coincides with
large p. The markers breaking these limits are filtrated out
and recycled around the magnetic axis, which contributes
to maintain marker population there. This method is an ex-
tension of the marker recycling technique at the outermost
surface ρ = 1, which already has been equipped with pre-
vious FORTEC-3D. The details of recycling and determin-
ing new weights for those recycled markers are explained
in Ref. [9].

To check the effect of filters, we have conducted sev-
eral tests with varied strength of filters as shown in Table 1.
The same configuration as used in Sec. 4 is used. Note here
that the “old” simulation used the old P operator and the
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new flux-evaluation scheme, but was not equipped with
filters for the weight p. In Fig. 5, comparisons of radial
electric field at three different times with varied filters are
shown. Note that the simulation of the old scheme stopped
around 3800 steps because of huge noise. As shown there,
the time evolution of Eρ and quasi-steady state profiles (the
last figure of the three) are almost the same regardless of
the strength of filters. In addition, the transition from ion-
to electron-root propagates at almost the same pace among
these simulations. Profiles of the ion particle flux Γi and
energy flux Qene = 〈

∫
d3vρ̇Kδ f /|∇ρ|〉 at the quasi-steady

state are also compared among different filters in Fig. 6. It
is confirmed that the strength of the filters does not affect
the neoclassical transport level so much, at most 10% for
Γi and 20% for Qene between the results with filter-1 and
filter-5. We can also see that the neoclassical fluxes Γi and
Qene obtained from FORTEC-3D agree with the GSRAKE
solutions. The fluxes are reduced to the electron-root level
at 0.2 < ρ < 0.5, which is a good example of the im-
provement scenario of plasma confinement by positive-Eρ

in LHD plasmas.
To examine the time evolution in detail, we compare

Fig. 7 Comparison of time evolution of Er and Γi among old,
filter-1, and filter-5 calculations on ρ = 0.45 surface. The
oscillation at the beginning phase is GAM. Time is nor-
malized by the ion collision time τi(ρ = 0.5) 
 2.66 ms,
and 1τi corresponds to 2500 steps in the simulation.

Eρ and Γi on ρ = 0.45 surface for three different filters
in Fig. 7. Here, error-bars are evaluated from the variance
between every 30 steps. It is found that the filters success-
fully suppress the numerical noise even by the weakest fil-
ter, although the start timing of transition differs slightly
among three simulations. Therefore the 10% difference
in neoclassical flux between filter-1 and filter-5 can be at-
tributed to the fact the filter-1 is too strong. To reduce the
numerical noise without affecting observable values such
as Γi and Qene, a very weak filter is found to be both
preferable and sufficient. It is also notable that the sim-
ulation marker number can be reduced without increasing
the noise level, if we adopt the filters.

In Fig. 8, the marker distributions of which are fil-
trated out are plotted in the (θ, ζ)-space and the (v‖, v⊥)-
space for the filter-3 case. Note that the distribution of

Fig. 8 Filtrated marker distribution in (a): (θ, ζ)-space and (b):
(v‖, v⊥)-space, for the filter-3 case at four different mo-
ments. The blue lines in Fig. 8 (a) show the position of he-
lical coils. In Fig. 8 (b), the radial positions where mark-
ers are eliminated are also indicated.
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Fig. 9 Comparison of the % of markers filtrated among the sim-
ulation filter-1, 3, and 5. The symbols represents the
number of markers that break the limit for the weights
and velocity, while the lines represent those who escape
from the ρ = 1 surface.

the markers that escaped from the outermost surface are
also plotted in those figures. It can be seen that the
filtrated markers range in |v‖|/v⊥ � 1, v/vth > 3 and be-
tween the helical coils, which shows that the markers with
huge weights are indeed deeply trapped, high-speed par-
ticles as expected. As mentioned in Ref. [16], putting
filters on marker weights corresponds to the δ f simula-
tions in which DKE is solved only in a thin layer around a
flux-surface and remove markers that escape from the thin
layer [15, 24]. Then it should be carefully verified how
much the filtering scheme screens the non-local effects on
neoclassical transport from large-orbit particles, which we
intend to study with the FORTEC-3D global transport sim-
ulation. Concerning the test calculations shown here, the
filter strength is very weak compared with that used in
Ref. [16] where the filter |δ f |/ fM(∼ |w|/p) < 0.01 was ap-
plied. As a result, the fraction of markers that are filtrated
in our simulation is less than 0.05% at most, as shown in
Fig. 9. The effect of the filters on the conservation of parti-
cle numbers is also checked. In Fig. 10, the time change of
the value∫

d3x
∫

d3vδ f (X, u, t)∫
d3x

∫
d3v fM(X, u)



∑

k wk(t)∑
k pk(t = 0)

in each simulation is plotted, where the volume integral
is evaluated in the whole plasma volume. As the simu-
lation system has an open boundary at ρ = 1, there is
no strict conservation of the total particle number, mo-
mentum, and energy. However, the strength of the filters
do affect the change in the total particle number. As ex-
pected, the conservation of particle number is better for
weaker filters. One can also see in Fig. 10 that the require-
ment |δ f |/ fM � 1 is well satisfied in the sense of volume-
average with the weakest filter, filter-5, while this filter al-

Fig. 10 Comparison of the time evolution of the value∑
k wk(t)/

∑
k pk(t = 0) among filter-1 to -5. The sums are

taken over the whole markers inside the plasma, ρ < 1.

lows a marker has |w|/p ∼ 10, that is, |δ f |/ fM could be
much larger than unity on some local points in the phase
space. Although the δ f formulation assumes |δ f |/ fM � 1,
this assumption is actually used only to neglect the non-
linear collision term C(δ f , δ f ) to derive the DKE, Eq. (1),
and we expect that only a weak filter for weight and veloc-
ity is sufficient to reduce statistical noise but retain conser-
vation property and the FOW effects on transport. More
detailed study will be done as FORTEC-3D is applied to
non-local transport study.

6. Discussion and Conclusion
The improvements for numerical schemes in

FORTEC-3D were proved to reduce numerical errors and
noises significantly with tolerable changes in the observ-
able values such as flux and electric field. FORTEC-3D
will be applied to study the FOW effects in helical
plasmas, transition phenomena of radial electric field, and
so on.

We have discussed the FOW effect on the ion-root Eρ

profile in Ref. [9]. It has been found that the ion-root
Eρ usually becomes more negatively large in FORTEC-
3D simulations compared with the GSRAKE estimation,
as one can also see in Fig. 5 at ρ > 0.6. On the other
hand, Γi and Qene show little difference with the GSRAKE
solutions in the present simulations. Remarkable differ-
ence can only be seen in the Qene profile near the mag-
netic axis ρ < 0.2, where the energy flux is strongly sup-
pressed. Since this region corresponds to the inner transi-
tion layer, the existence of the sheared Eρ profile requires
non-local treatment in neoclassical transport analysis. It is
also anticipated that large-orbit-width particles like potato
particles [5, 6] in tokamak core would appear in the re-
gion near the axis of LHD, and reduce the energy trans-
port there [14, 25]. However, since the model profile used
here has a transition layer close to the magnetic axis, it
is difficult to study separately these two possible factors,
which will include the FOW effect in the core neoclassi-
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cal transport. This problem will be studied using a sim-
pler model profile near the future. We are also planning to
apply the δ f method to solve electron transport and evalu-
ate the bootstrap current in the presence of ambipolar elec-
tric field.
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Appendix. Proof for Wi− : Wi+ �
∆V+

i
: ∆V−

i

First, consider that W0
i± are taken so that they exactly

satisfy the relations

W0
i− : W0

i+ = ∆V+i : ∆V−i , (A.1)

W0
i− +W0

i+ = 1. (A.2)

Next, the difference between Wi+ and W0
i+ is described as

ε, that is,

Wi+ = W0
i+ + ε, Wi− = W0

i− − ε. (A.3)

Using the relations in Eqs. (A.1) and (A.2), it follows

Wi+∆V+i −Wi−∆V−i
∆Vi

= ε. (A.4)

Substituting Eq. (17) into Eq. (A.4) and using the approxi-
mations V ′i 
 (V ′i+1/2+V ′i−1/2)/2 , ∆Vi 
 ∆ρ(V ′i+1/2+V ′i−1/2)
and ∆V±i 
 ∆ρ(V ′i + V ′i±1/2)/2, we have

ε 
 3(V ′i+1/2 − V ′i−1/2)

4(V ′i+1/2 + V ′i−1/2)
∼ O

(
∆ρV ′′i

V ′i

)
∼ O

(
∆S
S

)
,

(A.5)

where S is the surface cross-section of ρ = ρi flux-surface
and ∆S ∼ S (ρi+1/2) − S (ρi−1/2). Therefore, as far as suffi-
ciently small radial mesh size is used, we can regard ε � 1.
For example, in the case of LHD model configuration we
used here, |ε| < 0.03 for 60 radial meshes.

The effect of the error ε to the interpolation of flux can
also be evaluated. By substituting Eq. (A.3) into Eq. (15),
one obtains

¯̄Γ(ρi) = W0
i−Γ̄(ρi−1/2) +W0

i+Γ̄(ρi+1/2)

+ ε
(
Γ̄(ρi+1/2) − Γ̄(ρi−1/2)

)

=
1
∆Vi

[
∆V+i Γ̄(ρi−1/2) + ∆V−i Γ̄(ρi+1/2)

]

×
[
1 + O

(
∆ρ2V ′′

Γ

dΓ
dV

)]
. (A.6)

Thus ¯̄Γ has at least the same order of accuracy as Γ̄.
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